File size: 3,373 Bytes
4477da2
 
65b51a7
df81834
 
65b51a7
17fdc5b
9964826
8bd2e0e
2b933c2
06e4a0f
3ddb755
4477da2
06e4a0f
db585e5
 
 
2b933c2
3ddb755
 
2b933c2
06e4a0f
4477da2
 
06e4a0f
 
 
4477da2
 
 
 
 
 
 
 
 
 
 
930884e
06e4a0f
4477da2
 
 
 
 
3ddb755
4477da2
 
3ddb755
 
7913d56
06e4a0f
3ddb755
7913d56
ed7f4e7
3ddb755
7913d56
3ddb755
ed7f4e7
8bd2e0e
28552e1
4477da2
06e4a0f
 
 
 
 
 
 
 
 
db585e5
06e4a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import datasets


logger = datasets.logging.get_logger(__name__)


_URL = "https://github.com/Kriyansparsana/demorepo/blob/f4501f1de2c759ee215952b2288e47ef5161f658/indian-name-org.csv"


class indian_namesConfig(datasets.BuilderConfig):
    """The WNUT 17 Emerging Entities Dataset."""

    def __init__(self, **kwargs):
        """BuilderConfig for WNUT 17.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(indian_namesConfig, self).__init__(**kwargs)


class indian_names(datasets.GeneratorBasedBuilder):
    """The WNUT 17 Emerging Entities Dataset."""

    BUILDER_CONFIGS = [
        indian_namesConfig(
            name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-PER",
                                "B-ORG"
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            current_tokens = []
            current_labels = []
            sentence_counter = 0
            for row in f:
                row = row.rstrip()
                if row:
                    token, label = row.split("\t")
                    current_tokens.append(token)
                    current_labels.append(label)
                else:
                    # New sentence
                    if not current_tokens:
                        # Consecutive empty lines will cause empty sentences
                        continue
                    assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
                    sentence = (
                        sentence_counter,
                        {
                            "id": str(sentence_counter),
                            "tokens": current_tokens,
                            "ner_tags": current_labels,
                        },
                    )
                    sentence_counter += 1
                    current_tokens = []
                    current_labels = []
                    yield sentence
            # Don't forget last sentence in dataset 🧐
            if current_tokens:
                yield sentence_counter, {
                    "id": str(sentence_counter),
                    "tokens": current_tokens,
                    "ner_tags": current_labels,
                }