Datasets:

File size: 6,354 Bytes
9a4b2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e55d71
9a4b2d3
2e55d71
 
9a4b2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0e8de
9a4b2d3
 
 
e99c58b
9a4b2d3
 
 
 
 
 
 
 
8884e59
 
9a4b2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abd87b
9a4b2d3
1aa1632
 
 
 
9a4b2d3
 
598981c
9a4b2d3
 
 
 
 
 
 
 
 
1aa1632
9a4b2d3
 
1aa1632
9a4b2d3
1aa1632
 
 
9a4b2d3
 
 
 
 
 
 
 
 
f840afe
9a4b2d3
 
 
cd84d81
9a4b2d3
1aa1632
 
 
9a4b2d3
1aa1632
9a4b2d3
8884e59
f405d8e
 
9a4b2d3
 
 
 
 
 
 
 
f840afe
 
9a4b2d3
 
 
f840afe
cd84d81
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2023 KBLab and The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import datasets
import pandas as pd


_CITATION = """\
@misc{rekathati2023rixvox:,
  author = {Rekathati, Faton},
  title = {The KBLab Blog: RixVox: A Swedish Speech Corpus with 5500 Hours of Speech from Parliamentary Debates},
  url = {https://kb-labb.github.io/posts/2023-03-09-rixvox-a-swedish-speech-corpus/},
  year = {2023}
}
"""

_DESCRIPTION = """\
RixVox is a speech dataset comprised of speeches from the Swedish Parliament (the Riksdag). Audio from speeches have been aligned with official transcripts, on the sentence level, using aeneas. 
Speaker metadata is available for each observation, including the speaker's name, gender, party, birth year and electoral district. The dataset contains a total of 5493 hours of speech. 
An observation may consist of one or several sentences (up to 30 seconds in duration).
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

_LICENSE = "CC BY 4.0"

_N_SHARDS = {"train": 126, "dev": 2, "test": 2}

_BASE_PATH = "data/"
_META_URL = _BASE_PATH + "{split}_metadata.parquet"
_DATA_URL = _BASE_PATH + "{split}/{split}_{shard_idx}.tar.gz"


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class Rixvox(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    DEFAULT_CONFIG_NAME = "all"

    def _info(self):

        features = datasets.Features(
            {
                "dokid": datasets.Value("string"),
                "anforande_nummer": datasets.Value("int16"),
                "observation_nr": datasets.Value("int16"),
                "audio": datasets.features.Audio(sampling_rate=16_000),
                "text": datasets.Value("string"),
                "debatedate": datasets.Value("date32"),
                "speaker": datasets.Value("string"),
                "party": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "birth_year": datasets.Value("int64"),
                "electoral_district": datasets.Value("string"),
                "intressent_id": datasets.Value("string"),
                "speaker_from_id": datasets.Value("bool"),
                "speaker_audio_meta": datasets.Value("string"),
                "start": datasets.Value("float64"),
                "end": datasets.Value("float64"),
                "duration": datasets.Value("float64"),
                "bleu_score": datasets.Value("float64"),
                "filename": datasets.Value("string"),
                "path": datasets.Value("string"),
                "speaker_total_hours": datasets.Value("float64"),
                # These are the features of your dataset like images, labels ...
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
        splits = ["train", "dev", "test"]
        meta_urls = {split: [_META_URL.format(split=split)] for split in splits}

        archive_urls = {
            split: [_DATA_URL.format(split=split, shard_idx=idx) for idx in range(0, _N_SHARDS[split])]
            for split in splits
        }

        archive_paths = dl_manager.download(archive_urls)
        local_extracted_archives = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
        meta_paths = dl_manager.download(meta_urls)

        split_generators = []
        split_names = {
            "train": datasets.Split.TRAIN,
            "dev": datasets.Split.VALIDATION,
            "test": datasets.Split.TEST,
        }

        for split in splits:
            split_generators.append(
                datasets.SplitGenerator(
                    name=split_names.get(split),
                    gen_kwargs={
                        "local_extracted_archive_paths": local_extracted_archives.get(split),
                        "archive_iters": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
                        "meta_paths": meta_paths[split],
                    },
                ),
            )

        return split_generators

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(
        self,
        local_extracted_archive_paths,
        archive_iters,
        meta_paths,
    ):
        key = 0

        data = []
        for meta_path in meta_paths:
            data.append(pd.read_parquet(meta_path))

        df_meta = pd.concat(data)

        df_meta = df_meta.set_index("filename", drop=False)
        # Column contains NAType, so we convert to object type column and NAType to None values.
        df_meta["birth_year"] = df_meta["birth_year"].astype("object").where(df_meta["birth_year"].notnull(), None)

        for i, audio_archive in enumerate(archive_iters):
            for filename, file in audio_archive:
                if filename not in df_meta.index:
                    continue

                result = dict(df_meta.loc[filename])
                path = (
                    os.path.join(local_extracted_archive_paths[i], filename)
                    if local_extracted_archive_paths is not None
                    else filename
                )
                result["audio"] = {"path": path, "bytes": file.read()}
                result["path"] = path if local_extracted_archive_paths else filename

                yield key, result
                key += 1