Datasets:
File size: 11,893 Bytes
5186455 123b162 609538f 5db1519 5186455 d76b750 5186455 7529314 aadd8ae 6b7d2c1 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 c1e8296 99a0348 5186455 5db1519 5186455 aadd8ae 5186455 aadd8ae 5186455 02083a3 5186455 7ed59db 5db1519 5186455 5db1519 5186455 5db1519 5186455 5db1519 5186455 5db1519 5186455 02083a3 c1e8296 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
---
annotations_creators:
- found
language_creators:
- found
language:
- ar
- en
- es
- fr
- ru
- zh
license: other
multilinguality:
- multilingual
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: united-nations-parallel-corpus
pretty_name: United Nations Parallel Corpus
config_names:
- ar-en
- ar-es
- ar-fr
- ar-ru
- ar-zh
- en-es
- en-fr
- en-ru
- en-zh
- es-fr
- es-ru
- es-zh
- fr-ru
- fr-zh
- ru-zh
dataset_info:
- config_name: ar-en
features:
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 8039673899
num_examples: 20044478
download_size: 3638378262
dataset_size: 8039673899
- config_name: ar-es
features:
- name: translation
dtype:
translation:
languages:
- ar
- es
splits:
- name: train
num_bytes: 8715738416
num_examples: 20532014
download_size: 3938780664
dataset_size: 8715738416
- config_name: ar-fr
features:
- name: translation
dtype:
translation:
languages:
- ar
- fr
splits:
- name: train
num_bytes: 8897831806
num_examples: 20281645
download_size: 3976788621
dataset_size: 8897831806
- config_name: ar-ru
features:
- name: translation
dtype:
translation:
languages:
- ar
- ru
splits:
- name: train
num_bytes: 11395906619
num_examples: 20571334
download_size: 4836152717
dataset_size: 11395906619
- config_name: ar-zh
features:
- name: translation
dtype:
translation:
languages:
- ar
- zh
splits:
- name: train
num_bytes: 6447644160
num_examples: 17306056
download_size: 3050491574
dataset_size: 6447644160
- config_name: en-es
features:
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 8241615138
num_examples: 25227004
download_size: 3986062875
dataset_size: 8241615138
- config_name: en-fr
features:
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 9718498495
num_examples: 30340652
download_size: 4580188433
dataset_size: 9718498495
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 11156144547
num_examples: 25173398
download_size: 4899993315
dataset_size: 11156144547
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 4988798590
num_examples: 17451549
download_size: 2554362693
dataset_size: 4988798590
- config_name: es-fr
features:
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 9230870495
num_examples: 25887160
download_size: 4379207947
dataset_size: 9230870495
- config_name: es-ru
features:
- name: translation
dtype:
translation:
languages:
- es
- ru
splits:
- name: train
num_bytes: 10789762294
num_examples: 22294106
download_size: 4748706797
dataset_size: 10789762294
- config_name: es-zh
features:
- name: translation
dtype:
translation:
languages:
- es
- zh
splits:
- name: train
num_bytes: 5475351906
num_examples: 17599223
download_size: 2774470102
dataset_size: 5475351906
- config_name: fr-ru
features:
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 12099649535
num_examples: 25219973
download_size: 5264326148
dataset_size: 12099649535
- config_name: fr-zh
features:
- name: translation
dtype:
translation:
languages:
- fr
- zh
splits:
- name: train
num_bytes: 5679208110
num_examples: 17521170
download_size: 2828146104
dataset_size: 5679208110
- config_name: ru-zh
features:
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 7905429097
num_examples: 17920922
download_size: 3601589709
dataset_size: 7905429097
configs:
- config_name: ar-en
data_files:
- split: train
path: ar-en/train-*
- config_name: ar-es
data_files:
- split: train
path: ar-es/train-*
- config_name: ar-fr
data_files:
- split: train
path: ar-fr/train-*
- config_name: ar-ru
data_files:
- split: train
path: ar-ru/train-*
- config_name: ar-zh
data_files:
- split: train
path: ar-zh/train-*
- config_name: en-es
data_files:
- split: train
path: en-es/train-*
- config_name: en-fr
data_files:
- split: train
path: en-fr/train-*
- config_name: en-ru
data_files:
- split: train
path: en-ru/train-*
- config_name: en-zh
data_files:
- split: train
path: en-zh/train-*
- config_name: es-fr
data_files:
- split: train
path: es-fr/train-*
- config_name: es-ru
data_files:
- split: train
path: es-ru/train-*
- config_name: es-zh
data_files:
- split: train
path: es-zh/train-*
- config_name: fr-ru
data_files:
- split: train
path: fr-ru/train-*
- config_name: fr-zh
data_files:
- split: train
path: fr-zh/train-*
- config_name: ru-zh
data_files:
- split: train
path: ru-zh/train-*
---
# Dataset Card for United Nations Parallel Corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://opus.nlpl.eu/UNPC/corpus/version/UNPC
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** https://aclanthology.org/L16-1561/
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Summary
The United Nations Parallel Corpus is the first parallel corpus composed from United Nations documents published by the original data creator.
The parallel corpus consists of manually translated UN documents from the last 25 years (1990 to 2014)
for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish.
The corpus is freely available for download under a liberal license.
### Supported Tasks and Leaderboards
The underlying task is machine translation.
### Languages
The six official UN languages: Arabic, Chinese, English, French, Russian, and Spanish.
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
https://conferences.unite.un.org/UNCORPUS/#disclaimer
The following disclaimer, an integral part of the United Nations Parallel Corpus, shall be respected with regard to the Corpus (no other restrictions apply):
- The United Nations Parallel Corpus is made available without warranty of any kind, explicit or implied. The United Nations specifically makes no warranties or representations as to the accuracy or completeness of the information contained in the United Nations Corpus.
- Under no circumstances shall the United Nations be liable for any loss, liability, injury or damage incurred or suffered that is claimed to have resulted from the use of the United Nations Corpus. The use of the United Nations Corpus is at the user's sole risk. The user specifically acknowledges and agrees that the United Nations is not liable for the conduct of any user. If the user is dissatisfied with any of the material provided in the United Nations Corpus, the user's sole and exclusive remedy is to discontinue using the United Nations Corpus.
- When using the United Nations Corpus, the user must acknowledge the United Nations as the source of the information. For references, please cite this reference: Ziemski, M., Junczys-Dowmunt, M., and Pouliquen, B., (2016), The United Nations Parallel Corpus, Language Resources and Evaluation (LREC’16), Portorož, Slovenia, May 2016.
- Nothing herein shall constitute or be considered to be a limitation upon or waiver, express or implied, of the privileges and immunities of the United Nations, which are specifically reserved.
### Citation Information
```
@inproceedings{ziemski-etal-2016-united,
title = "The {U}nited {N}ations Parallel Corpus v1.0",
author = "Ziemski, Micha{\\l} and
Junczys-Dowmunt, Marcin and
Pouliquen, Bruno",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://www.aclweb.org/anthology/L16-1561",
pages = "3530--3534",
abstract = "This paper describes the creation process and statistics of the official United Nations Parallel Corpus, the first parallel corpus composed from United Nations documents published by the original data creator. The parallel corpus presented consists of manually translated UN documents from the last 25 years (1990 to 2014) for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish. The corpus is freely available for download under a liberal license. Apart from the pairwise aligned documents, a fully aligned subcorpus for the six official UN languages is distributed. We provide baseline BLEU scores of our Moses-based SMT systems trained with the full data of language pairs involving English and for all possible translation directions of the six-way subcorpus.",
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |