Datasets:
File size: 14,741 Bytes
fba0b96 8e891c2 b59f927 8e891c2 b59f927 8e891c2 fba0b96 8e891c2 e8a0bff 8e891c2 290e8c1 da88b83 8e891c2 e8a0bff 7278236 13c7b99 7278236 8e891c2 9abd1d1 8e891c2 e8a0bff 8e891c2 e8a0bff 8e891c2 e8a0bff 8e891c2 e8a0bff 8e891c2 e8a0bff 8e891c2 e8a0bff 8e891c2 e8a0bff 8e891c2 5ae552e 8e891c2 ce55afa 8e891c2 ce55afa 57b7e0b ce55afa 8e891c2 e8a0bff 8e891c2 e8a0bff 8e891c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
---
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- found
language:
- en
- it
- vi
- nl
- uk
- tr
- ar
license:
- gpl-3.0
multilinguality:
- translation
pretty_name: divemt
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- translation
---
# Dataset Card for DivEMT
*For more details on DivEMT, see our [EMNLP 2022 Paper](https://arxiv.org/abs/2205.12215) and our [Github repository](https://github.com/gsarti/divemt)*
## Dataset Description
- **Source:** [Github](https://github.com/gsarti/divemt)
- **Paper:** [Arxiv](https://arxiv.org/abs/2205.12215)
- **Point of Contact:** [Gabriele Sarti](mailto:g.sarti@rug.nl)
[Gabriele Sarti](https://gsarti.com) • [Arianna Bisazza](https://www.cs.rug.nl/~bisazza/) • [Ana Guerberof Arenas](https://scholar.google.com/citations?user=i6bqaTsAAAAJ) • [Antonio Toral](https://antoniotor.al/)
<img src="https://huggingface.co/datasets/GroNLP/divemt/resolve/main/divemt.png" alt="DivEMT annotation pipeline" width="600"/>
>We introduce DivEMT, the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times and pauses were recorded, enabling an in-depth, cross-lingual evaluation of NMT quality and post-editing effectiveness. Using this new dataset, we assess the impact of two state-of-the-art NMT systems, Google Translate and the multilingual mBART-50 model, on translation productivity. We find that post-editing is consistently faster than translation from scratch. However, the magnitude of productivity gains varies widely across systems and languages, highlighting major disparities in post-editing effectiveness for languages at different degrees of typological relatedness to English, even when controlling for system architecture and training data size. We publicly release the complete dataset including all collected behavioral data, to foster new research on the translation capabilities of NMT systems for typologically diverse languages.
### Dataset Summary
This dataset contains the processed `warmup` and `main` splits of the DivEMT dataset. A sample of documents extracted from the Flores-101 corpus were either translated from scratch or post-edited from an existing automatic translation by a total of 18 professional translators across six typologically diverse languages (Arabic, Dutch, Italian, Turkish, Ukrainian, Vietnamese). During the translation, behavioral data (keystrokes, pauses, editing times) were collected using the [PET](https://github.com/wilkeraziz/PET) platform.
We publicly release the processed dataset including all collected behavioural data, to foster new research on the ability of state-of-the-art NMT systems to generate text in typologically diverse languages.
### News 🎉
**February, 2023**: The DivEMT dataset now contains linguistic annotations (`*_annotations` fields) computed with Stanza and word-level quality estimation tags (`src_wmt22_qe`, `mt_wmt22_qe`) obtained using the same scripts adopted for the WMT22 QE Task 2.
### Languages
The language data of DivEMT is in English (BCP-47 `en`), Italian (BCP-47 `it`), Dutch (BCP-47 `nl`), Arabic (BCP-47 `ar`), Turkish (BCP-47 `tr`), Ukrainian (BCP-47 `uk`) and Vietnamese (BCP-47 `vi`)
## Dataset Structure
### Data Instances
The dataset contains two configurations: `main` and `warmup`. `main` contains the full data collected during the main task and analyzed during our experiments. `warmup` contains the data collected in the verification phase, before the main task begins.
### Data Fields
The following fields are contained in the training set:
|Field|Description|
|-----|-----------|
|`unit_id` | The full entry identifier. Format: `flores101-{config}-{lang}-{doc_id}-{modality}-{sent_in_doc_num}` |
|`flores_id` | Index of the sentence in the original [Flores-101](https://huggingface.co/datasets/gsarti/flores_101) dataset |
|`item_id` | The sentence identifier. The first digits of the number represent the document containing the sentence, while the last digit of the number represents the sentence position inside the document. Documents can contain from 3 to 5 contiguous sentences each. |
|`subject_id` | The identifier for the translator performing the translation from scratch or post-editing task. Values: `t1`, `t2` or `t3`. |
|`lang_id` | Language identifier for the sentence, using Flores-101 three-letter format (e.g. `ara`, `nld`)|
|`doc_id` | Document identifier for the sentence |
|`task_type` | The modality of the translation task. Values: `ht` (translation from scratch), `pe1` (post-editing Google Translate translations), `pe2` (post-editing [mBART 1-to-50](https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt) translations). |
|`translation_type` | Either `ht` for from scratch or `pe` for post-editing |
|`src_len_chr` | Length of the English source text in number of characters |
|`mt_len_chr` | Length of the machine translation in number of characters (NaN for ht) |
|`tgt_len_chr` | Length of the target text in number of characters |
|`src_len_wrd` | Length of the English source text in number of words |
|`mt_len_wrd` | Length of the machine translation in number of words (NaN for ht) |
|`tgt_len_wrd` | Length of the target text in number of words |
|`edit_time` | Total editing time for the translation in seconds. |
|`k_total` | Total number of keystrokes for the translation. |
|`k_letter` | Total number of letter keystrokes for the translation. |
|`k_digit` | Total number of digit keystrokes for the translation. |
|`k_white` | Total number of whitespace keystrokes for the translation. |
|`k_symbol` | Total number of symbol (punctuation, etc.) keystrokes for the translation. |
|`k_nav` | Total number of navigation keystrokes (left-right arrows, mouse clicks) for the translation. |
|`k_erase` | Total number of erase keystrokes (backspace, cancel) for the translation. |
|`k_copy` | Total number of copy (Ctrl + C) actions during the translation. |
|`k_cut` | Total number of cut (Ctrl + X) actions during the translation. |
|`k_paste` | Total number of paste (Ctrl + V) actions during the translation. |
|`k_do` | Total number of Enter actions during the translation. |
|`n_pause_geq_300` | Number of pauses of 300ms or more during the translation. |
|`len_pause_geq_300` | Total duration of pauses of 300ms or more, in milliseconds. |
|`n_pause_geq_1000` | Number of pauses of 1s or more during the translation. |
|`len_pause_geq_1000` | Total duration of pauses of 1000ms or more, in milliseconds. |
|`event_time` | Total time summed across all translation events, should be comparable to `edit_time` in most cases. |
|`num_annotations` | Number of times the translator focused the textbox for performing the translation of the sentence during the translation session. E.g. 1 means the translation was performed once and never revised. |
|`n_insert` | Number of post-editing insertions (empty for modality `ht`) computed using the [tercom](https://github.com/jhclark/tercom) library. |
|`n_delete` | Number of post-editing deletions (empty for modality `ht`) computed using the [tercom](https://github.com/jhclark/tercom) library. |
|`n_substitute` | Number of post-editing substitutions (empty for modality `ht`) computed using the [tercom](https://github.com/jhclark/tercom) library. |
|`n_shift` | Number of post-editing shifts (empty for modality `ht`) computed using the [tercom](https://github.com/jhclark/tercom) library. |
|`tot_shifted_words` | Total amount of shifted words from all shifts present in the sentence. |
|`tot_edits` | Total of all edit types for the sentence. |
|`hter` | Human-mediated Translation Edit Rate score computed between MT and post-edited TGT (empty for modality `ht`) using the [tercom](https://github.com/jhclark/tercom) library. |
|`cer` | Character-level HTER score computed between MT and post-edited TGT (empty for modality `ht`) using [CharacTER](https://github.com/rwth-i6/CharacTER).
|`bleu` | Sentence-level BLEU score between MT and post-edited TGT (empty for modality `ht`) computed using the [SacreBLEU](https://github.com/mjpost/sacrebleu) library with default parameters. |
|`chrf` | Sentence-level chrF score between MT and post-edited TGT (empty for modality `ht`) computed using the [SacreBLEU](https://github.com/mjpost/sacrebleu) library with default parameters. |
|`time_s` | Edit time expressed in seconds. |
|`time_m` | Edit time expressed in minutes. |
|`time_h` | Edit time expressed in hours. |
|`time_per_char` | Edit time per source character, expressed in seconds. |
|`time_per_word` | Edit time per source word, expressed in seconds. |
|`key_per_char` | Proportion of keys per character needed to perform the translation. |
|`words_per_hour` | Amount of source words translated or post-edited per hour. |
|`words_per_minute` | Amount of source words translated or post-edited per minute. |
|`per_subject_visit_order` | Id denoting the order in which the translator accessed documents. 1 correspond to the first accessed document. |
|`src_text` | The original source sentence extracted from Wikinews, wikibooks or wikivoyage. |
|`mt_text` | Missing if tasktype is `ht`. Otherwise, contains the automatically-translated sentence before post-editing. |
|`tgt_text` | Final sentence produced by the translator (either via translation from scratch of `sl_text` or post-editing `mt_text`) |
|`aligned_edit` | Aligned visual representation of REF (`mt_text`), HYP (`tl_text`) and edit operations (I = Insertion, D = Deletion, S = Substitution) performed on the field. Replace `\\n` with `\n` to show the three aligned rows.|
|`src_tokens` | List of tokens obtained tokenizing `src_text` with Stanza using default params. |
|`src_annotations` | List of lists (one per `src_tokens` token) containing dictionaries (one per word, >1 for mwt) with pos, ner and other info parsed by Stanza |
|`mt_tokens` | List of tokens obtained tokenizing `mt_text` with Stanza using default params. |
|`mt_annotations` | List of lists (one per `mt_tokens` token) containing dictionaries (one per word, >1 for mwt) with pos, ner and other info parsed by Stanza |
|`tgt_tokens` | List of tokens obtained tokenizing `tgt_text` with Stanza using default params. |
|`tgt_annotations` | List of lists (one per `tgt_tokens` token) containing dictionaries (one per word, >1 for mwt) with pos, ner and other info parsed by Stanza |
### Data Splits
| config | train|
|-------:|-----:|
|`main` | 7740 (107 docs i.e. 430 sents x 18 translators) |
|`warmup`| 360 (5 docs i.e. 20 sents x 18 translators) |
#### Train Split
The `train` split contains the totality of triplets (or pairs, when translation from scratch is performed) annotated with behavioral data produced during the translation.
The following is an example of the subject `t1` post-editing a machine translation produced by Google Translate (task_type `pe1`) taken from the `train` split for Turkish. The field `aligned_edit` is showed over three lines to provide a visual understanding of its contents.
```json
{
'unit_id': 'flores101-main-tur-46-pe1-3',
'flores_id': 871,
'item_id': 'flores101-main-463',
'subject_id': 'tur_t1',
'task_type': 'pe1',
'translation_type': 'pe',
'src_len_chr': 109,
'mt_len_chr': 129.0,
'tgt_len_chr': 120,
'src_len_wrd': 17,
'mt_len_wrd': 15.0,
'tgt_len_wrd': 13,
'edit_time': 11.762999534606934,
'k_total': 31,
'k_letter': 9,
'k_digit': 0,
'k_white': 0,
'k_symbol': 0,
'k_nav': 20,
'k_erase': 2,
'k_copy': 0,
'k_cut': 0,
'k_paste': 0,
'k_do': 0,
'n_pause_geq_300': 2,
'len_pause_geq_300': 4986,
'n_pause_geq_1000': 1,
'len_pause_geq_1000': 4490,
'event_time': 11763,
'num_annotations': 2,
'last_modification_time': 1643569484,
'n_insert': 0.0,
'n_delete': 2.0,
'n_substitute': 1.0,
'n_shift': 0.0,
'tot_shifted_words': 0.0,
'tot_edits': 3.0,
'hter': 20.0,
'cer': 0.10,
'bleu': 0.0,
'chrf': 2.569999933242798,
'lang_id': 'tur',
'doc_id': 46,
'time_s': 11.762999534606934,
'time_m': 0.1960500031709671,
'time_h': 0.0032675000838935375,
'time_per_char': 0.1079174280166626,
'time_per_word': 0.6919412016868591,
'key_per_char': 0.2844036817550659,
'words_per_hour': 5202.75439453125,
'words_per_minute': 86.71257019042969,
'per_subject_visit_order': 201,
'src_text': 'As one example, American citizens in the Middle East might face different situations from Europeans or Arabs.',
'mt_text': "Bir örnek olarak, Orta Doğu'daki Amerikan vatandaşları, Avrupalılardan veya Araplardan farklı durumlarla karşı karşıya kalabilir.",
'tgt_text': "Örneğin, Orta Doğu'daki Amerikan vatandaşları, Avrupalılardan veya Araplardan farklı durumlarla karşı karşıya kalabilir.",
'aligned_edit': "REF: bir örnek olarak, orta doğu'daki amerikan vatandaşları, avrupalılardan veya araplardan farklı durumlarla karşı karşıya kalabilir.\\n
HYP: *** ***** örneğin, orta doğu'daki amerikan vatandaşları, avrupalılardan veya araplardan farklı durumlarla karşı karşıya kalabilir.\\n
EVAL: D D S"
}
```
The text is provided as-is, without further preprocessing or tokenization.
### Dataset Creation
The dataset was parsed from PET XML files into CSV format using the scripts available in the [DivEMT Github repository](https://github.com/gsarti/divemt).
Those are adapted from the ones by [Antonio Toral](https://research.rug.nl/en/persons/antonio-toral-ruiz) found at the following link: [https://github.com/antot/postediting_novel_frontiers](https://github.com/antot/postediting_novel_frontiers).
## Additional Information
### Dataset Curators
For problems related to this 🤗 Datasets version, please contact me at [g.sarti@rug.nl](mailto:g.sarti@rug.nl).
### Citation Information
```bibtex
@inproceedings{sarti-etal-2022-divemt,
title = "{D}iv{EMT}: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages",
author = "Sarti, Gabriele and
Bisazza, Arianna and
Guerberof-Arenas, Ana and
Toral, Antonio",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.532",
pages = "7795--7816",
}
``` |