File size: 17,715 Bytes
9f45be4 5646b79 9f45be4 5646b79 6008e29 5646b79 3d4cb67 9f45be4 ffca7e4 5646b79 5229611 a49618c ffca7e4 9f45be4 3e2a7f3 e9c872a 2355dcd f4e008a b79930f 771f4b0 a3ab6a2 9abb6f2 b8eaec1 5c9f289 53df6f1 fcc34e2 12f25d3 47edaed b257d9b 01f9a4c 246567f 0583f91 f4926e1 66700e4 c7b6e06 b614b31 7795a58 6711988 402a590 ffca7e4 15c2f50 a5a7ebd 699cecf 4d357b4 8b87d7a fd2b38e 4023308 3a20e80 9f45be4 ffca7e4 5646b79 428ea48 2355dcd f4e008a b79930f 771f4b0 a3ab6a2 9abb6f2 b8eaec1 5c9f289 53df6f1 f091bfe 47edaed b257d9b 01f9a4c 246567f 0583f91 f4926e1 66700e4 c7b6e06 b614b31 402a590 ffca7e4 9f45be4 ffca7e4 a503a84 699cecf 4d357b4 8b87d7a fd2b38e 4023308 3a20e80 9f45be4 3d4cb67 5c85b3d 3d4cb67 c806698 3d4cb67 5c85b3d d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 414768d 3d4cb67 5c85b3d 4e63083 5c85b3d 1a7d0ee 5c85b3d 3db9c61 5c85b3d b8a0728 5c85b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
---
language:
- en
license: apache-2.0
size_categories:
- 10M<n<100M
task_categories:
- reinforcement-learning
pretty_name: Procgen Benchmark Dataset
dataset_info:
- config_name: bigfish
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 31592522500
dataset_size: 289372500000
- config_name: bossfight
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: test
num_bytes: 8681175000
num_examples: 300000
- name: train
num_bytes: 260435250000
num_examples: 9000000
download_size: 57087830279
dataset_size: 269116425000
- config_name: caveflyer
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 5279167331
dataset_size: 28937250000
- config_name: chaser
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 2126890202
dataset_size: 28937250000
- config_name: climber
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 2073122202
dataset_size: 28937250000
- config_name: coinrun
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 2570909693
dataset_size: 28937250000
- config_name: dodgeball
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 34038260004
dataset_size: 289372500000
- config_name: fruitbot
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 8886977797
dataset_size: 28937250000
- config_name: heist
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 2536872649
dataset_size: 28937250000
- config_name: jumper
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 3610899511
dataset_size: 28937250000
- config_name: leaper
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 2281835608
dataset_size: 28937250000
- config_name: maze
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 2458751741
dataset_size: 28937250000
- config_name: miner
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 18949118303
dataset_size: 289372500000
- config_name: ninja
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 3296432308
dataset_size: 28937250000
- config_name: plunder
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 3420615878
dataset_size: 28937250000
- config_name: starpilot
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 9373161779
dataset_size: 28937250000
configs:
- config_name: bigfish
data_files:
- split: train
path: bigfish/train-*
- split: test
path: bigfish/test-*
- config_name: bossfight
data_files:
- split: train
path: bossfight/train-*
- split: test
path: bossfight/test-*
- config_name: caveflyer
data_files:
- split: train
path: caveflyer/train-*
- split: test
path: caveflyer/test-*
- config_name: chaser
data_files:
- split: train
path: chaser/train-*
- split: test
path: chaser/test-*
- config_name: climber
data_files:
- split: train
path: climber/train-*
- split: test
path: climber/test-*
- config_name: coinrun
data_files:
- split: train
path: coinrun/train-*
- split: test
path: coinrun/test-*
- config_name: dodgeball
data_files:
- split: train
path: dodgeball/train-*
- split: test
path: dodgeball/test-*
- config_name: fruitbot
data_files:
- split: train
path: fruitbot/train-*
- split: test
path: fruitbot/test-*
- config_name: heist
data_files:
- split: train
path: heist/train-*
- split: test
path: heist/test-*
- config_name: jumper
data_files:
- split: train
path: jumper/train-*
- split: test
path: jumper/test-*
- config_name: leaper
data_files:
- split: train
path: leaper/train-*
- split: test
path: leaper/test-*
- config_name: maze
data_files:
- split: train
path: maze/train-*
- split: test
path: maze/test-*
- config_name: miner
data_files:
- split: train
path: miner/train-*
- split: test
path: miner/test-*
- config_name: ninja
data_files:
- split: train
path: ninja/train-*
- split: test
path: ninja/test-*
- config_name: plunder
data_files:
- split: train
path: plunder/train-*
- split: test
path: plunder/test-*
- config_name: starpilot
data_files:
- split: train
path: starpilot/train-*
- split: test
path: starpilot/test-*
tags:
- procgen
- bigfish
- benchmark
- openai
- bossfight
- caveflyer
- chaser
- climber
- dodgeball
- fruitbot
- heist
- jumper
- leaper
- maze
- miner
- ninja
- plunder
- starpilot
---
# Procgen Benchmark
This dataset contains expert trajectories generated by a [PPO](https://arxiv.org/abs/1707.06347) reinforcement learning agent trained on each of the 16 procedurally-generated gym environments from the [Procgen Benchmark](https://openai.com/index/procgen-benchmark/). The environments were created on `distribution_mode=easy` and with unlimited levels.
Disclaimer: This is not an official repository from OpenAI.
## Dataset Usage
Regular usage (for environment bigfish):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="train")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="test")
```
Usage with PyTorch (for environment bossfight):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="train").with_format("torch")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="test").with_format("torch")
```
## Agent Performance
The PPO RL agent was trained for 50M steps on each environment and obtained the following final performance metrics.
| Environment | Steps (Train) | Steps (Test) | Return | Observation |
|:------------|:--------------|:-------------|:-------|:------------|
| bigfish | 900,000 | 100.000 | 29.16 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/lHQXBqLdoWicXlt68I9QX.mp4"></video> |
| bossfight | 900,000 | 100.000 | 11.35 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/LPoafGi4YBWqqkuFlEN_l.mp4"></video> |
| caveflyer | 900,000 | 100.000 | 09.47 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XVqRwu_9yfX4ECQc4At4G.mp4"></video> |
| chaser | 900,000 | 100.000 | 11.46 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/FIKVv48SThqiC1Z2PYQ7U.mp4"></video> |
| climber | 900,000 | 100.000 | 11.17 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XJQlA7IyF9_gwUiw-FkND.mp4"></video> |
| coinrun | 900,000 | 100.000 | 09.74 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/Ucv3HZttewMRQzTL8r_Tw.mp4"></video> |
| dodgeball | 900,000 | 100.000 | 16.78 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/5HetbKuXBpO-v1jcVyLTU.mp4"></video> |
| fruitbot | 900,000 | 100.000 | 29.87 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/zKCyxXvauXjUac-5kEAWz.mp4"></video> |
| heist | 900,000 | 100.000 | 09.98 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/AdZ6XNmUN5_00BKd9BN8R.mp4"></video> |
| jumper | 900,000 | 100.000 | 08.71 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/s5k31gWK2Vc6Lp6QVzQXA.mp4"></video> |
| leaper | 900,000 | 100.000 | 07.71 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/_hDMocxjmzutc0t5FfoTX.mp4"></video> |
| maze | 900,000 | 100.000 | 09.99 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/uhNdDPuNhZpxVns91Ba-9.mp4"></video> |
| miner | 900,000 | 100.000 | 12.63 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/ElpJ8l2WHJGrprZ3-giHU.mp4"></video> |
| ninja | 900,000 | 100.000 | 09.44 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/b9i-fb2Twh8XmBBNf2DRG.mp4"></video> |
| plunder | 900,000 | 100.000 | 25.98 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/JPeGNOVzrotuYUjfzZj40.mp4"></video> |
| starpilot | 900,000 | 100.000 | 55.28 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/wY9lZgkw5tor19hCWmm6A.mp4"></video> |
## Dataset Structure
### Data Instances
Each data instance represents a single step consisting of tuples of the form (observation, action, reward, done, truncated) = (o_t, a_t, r_{t+1}, done_{t+1}, trunc_{t+1}).
```json
{'action': 1,
'done': False,
'observation': [[[0, 166, 253],
[0, 174, 255],
[0, 170, 251],
[0, 191, 255],
[0, 191, 255],
[0, 221, 255],
[0, 243, 255],
[0, 248, 255],
[0, 243, 255],
[10, 239, 255],
[25, 255, 255],
[0, 241, 255],
[0, 235, 255],
[17, 240, 255],
[10, 243, 255],
[27, 253, 255],
[39, 255, 255],
[58, 255, 255],
[85, 255, 255],
[111, 255, 255],
[135, 255, 255],
[151, 255, 255],
[173, 255, 255],
...
[0, 0, 37],
[0, 0, 39]]],
'reward': 0.0,
'truncated': False}
```
### Data Fields
- `observation`: The current RGB observation from the environment.
- `action`: The action predicted by the agent for the current observation.
- `reward`: The received reward from stepping the environment with the current action.
- `done`: If the new observation is the start of a new episode. Obtained after stepping the environment with the current action.
- `truncated`: If the new observation is the start of a new episode due to truncation. Obtained after stepping the environment with the current action.
### Data Splits
The dataset is divided into a `train` (90%) and `test` (10%) split. Each environment-dataset has in sum 1M steps (data points).
## Dataset Creation
The dataset was created by training an RL agent with [PPO](https://arxiv.org/abs/1707.06347) for 50M steps in each environment. The trajectories where generated by sampling from the predicted action distribution at each step (not taking the argmax). The environments were created on `distribution_mode=easy` and with unlimited levels.
## Procgen Benchmark
The [Procgen Benchmark](https://openai.com/index/procgen-benchmark/), released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft. |