The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for BioLang
Dataset Summary
BioLang is a dataset is based on abstracts from the open access section of EuropePubMed Central to train language models in the domain of biology. The dataset can be used for random masked language modeling or for language modeling using only specific part-of-speech maksing. More details on generation and use of the dataset at https://github.com/source-data/soda-roberta .
Supported Tasks and Leaderboards
MLM
: masked language modelingDET
: part-of-speach masked language model, with determinants (DET
) taggedSMALL
: part-of-speech masked language model, with "small" words (DET
,CCONJ
,SCONJ
,ADP
,PRON
) taggedVERB
: part-of-speach masked language model, with verbs (VERB
) tagged
Languages
English
Dataset Structure
Data Instances
{
"input_ids":[
0, 2444, 6997, 46162, 7744, 35, 20632, 20862, 3457, 36, 500, 23858, 29, 43, 32, 3919, 716, 15, 49, 4476, 4, 1398, 6, 52, 1118, 5, 20862, 819, 9, 430, 23305, 248, 23858, 29, 4, 256, 40086, 104, 35, 1927, 1069, 459, 1484, 58, 4776, 13, 23305, 634, 16706, 493, 2529, 8954, 14475, 73, 34263, 6, 4213, 718, 833, 12, 24291, 4473, 22500, 14475, 73, 510, 705, 73, 34263, 6, 5143, 4313, 2529, 8954, 14475, 73, 34263, 6, 8, 5143, 4313, 2529, 8954, 14475, 248, 23858, 29, 23, 4448, 225, 4722, 2392, 11, 9341, 261, 4, 49043, 35, 96, 746, 6, 5962, 9, 38415, 4776, 408, 36, 3897, 4, 398, 8871, 56, 23305, 4, 20, 15608, 21, 8061, 6164, 207, 13, 70, 248, 23858, 29, 6, 150, 5, 42561, 21, 8061, 5663, 207, 13, 80, 3457, 4, 509, 1296, 5129, 21567, 3457, 36, 398, 23528, 8748, 22065, 11654, 35, 7253, 15, 49, 4476, 6, 70, 3457, 4682, 65, 189, 28, 5131, 13, 23305, 9726, 4, 2
],
"label_ids": [
"X", "NOUN", "NOUN", "NOUN", "NOUN", "PUNCT", "ADJ", "ADJ", "NOUN", "PUNCT", "PROPN", "PROPN", "PROPN", "PUNCT", "AUX", "VERB", "VERB", "ADP", "DET", "NOUN", "PUNCT", "ADV", "PUNCT", "PRON", "VERB", "DET", "ADJ", "NOUN", "ADP", "ADJ", "NOUN", "NOUN", "NOUN", "NOUN", "PUNCT", "ADJ", "ADJ", "ADJ", "PUNCT", "NOUN", "NOUN", "NOUN", "NOUN", "AUX", "VERB", "ADP", "NOUN", "VERB", "PROPN", "PROPN", "PROPN", "PROPN", "PROPN", "SYM", "PROPN", "PUNCT", "PROPN", "PROPN", "PROPN", "PUNCT", "PROPN", "PROPN", "PROPN", "PROPN", "SYM", "PROPN", "PROPN", "SYM", "PROPN", "PUNCT", "PROPN", "PROPN", "PROPN", "PROPN", "PROPN", "SYM", "PROPN", "PUNCT", "CCONJ", "ADJ", "PROPN", "PROPN", "PROPN", "PROPN", "NOUN", "NOUN", "NOUN", "ADP", "PROPN", "PROPN", "PROPN", "PROPN", "ADP", "PROPN", "PROPN", "PUNCT", "PROPN", "PUNCT", "ADP", "NOUN", "PUNCT", "NUM", "ADP", "NUM", "VERB", "NOUN", "PUNCT", "NUM", "NUM", "NUM", "NOUN", "AUX", "NOUN", "PUNCT", "DET", "NOUN", "AUX", "X", "NUM", "NOUN", "ADP", "DET", "NOUN", "NOUN", "NOUN", "PUNCT", "SCONJ", "DET", "NOUN", "AUX", "X", "NUM", "NOUN", "ADP", "NUM", "NOUN", "PUNCT", "NUM", "NOUN", "VERB", "ADJ", "NOUN", "PUNCT", "NUM", "NOUN", "NOUN", "NOUN", "NOUN", "PUNCT", "VERB", "ADP", "DET", "NOUN", "PUNCT", "DET", "NOUN", "SCONJ", "PRON", "VERB", "AUX", "VERB", "ADP", "NOUN", "NOUN", "PUNCT", "X"
],
"special_tokens_mask": [
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
]
}
Data Fields
MLM
:
input_ids
: alist
ofint32
features.special_tokens_mask
: alist
ofint8
features.
DET
, VERB
, SMALL
:
input_ids
: alist
ofint32
features.tag_mask
: alist
ofint8
features.
Data Splits
train
:- features: ['input_ids', 'special_tokens_mask'],
- num_rows: 12_005_390
test
:- features: ['input_ids', 'special_tokens_mask'],
- num_rows: 37_112
validation
:- features: ['input_ids', 'special_tokens_mask'],
- num_rows: 36_713
Dataset Creation
Curation Rationale
The dataset was assembled to train language models in the field of cell and molecular biology. To expand the size of the dataset and to include many examples with highly technical language, abstracts were complemented with figure legends (or figure 'captions').
Source Data
Initial Data Collection and Normalization
The xml content of papers were downloaded in January 2021 from the open access section of EuropePMC. Figure legends and abstracts were extracted from the JATS XML, tokenized with the roberta-base
tokenizer and part-of-speech tagged with Spacy's en_core_web_sm
model (https://spacy.io).
More details at https://github.com/source-data/soda-roberta
Who are the source language producers?
Experts scientists.
Annotations
Annotation process
Part-of-speech was tagged automatically.
Who are the annotators?
Spacy's en_core_web_sm
model (https://spacy.io) was used for part-of-speech tagging.
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
Thomas Lemberger
Licensing Information
CC-BY 4.0
Citation Information
[More Information Needed]
Contributions
Thanks to @tlemberger for adding this dataset.
- Downloads last month
- 66