Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:

Convert dataset to Parquet

#8
by nlp-mark - opened
.gitattributes CHANGED
@@ -17,3 +17,12 @@
17
  data/inter.zip filter=lfs diff=lfs merge=lfs -text
18
  data/intra.zip filter=lfs diff=lfs merge=lfs -text
19
  data/supervised.zip filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
17
  data/inter.zip filter=lfs diff=lfs merge=lfs -text
18
  data/intra.zip filter=lfs diff=lfs merge=lfs -text
19
  data/supervised.zip filter=lfs diff=lfs merge=lfs -text
20
+ inter/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
21
+ inter/validation-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
22
+ inter/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
23
+ intra/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
24
+ intra/validation-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
25
+ intra/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
26
+ supervised/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
27
+ supervised/validation-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
28
+ supervised/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -21,6 +21,338 @@ paperswithcode_id: few-nerd
21
  pretty_name: Few-NERD
22
  tags:
23
  - structure-prediction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ---
25
 
26
  # Dataset Card for "Few-NERD"
 
21
  pretty_name: Few-NERD
22
  tags:
23
  - structure-prediction
24
+ dataset_info:
25
+ - config_name: inter
26
+ features:
27
+ - name: id
28
+ dtype: string
29
+ - name: tokens
30
+ sequence: string
31
+ - name: ner_tags
32
+ sequence:
33
+ class_label:
34
+ names:
35
+ '0': O
36
+ '1': art
37
+ '2': building
38
+ '3': event
39
+ '4': location
40
+ '5': organization
41
+ '6': other
42
+ '7': person
43
+ '8': product
44
+ - name: fine_ner_tags
45
+ sequence:
46
+ class_label:
47
+ names:
48
+ '0': O
49
+ '1': art-broadcastprogram
50
+ '2': art-film
51
+ '3': art-music
52
+ '4': art-other
53
+ '5': art-painting
54
+ '6': art-writtenart
55
+ '7': building-airport
56
+ '8': building-hospital
57
+ '9': building-hotel
58
+ '10': building-library
59
+ '11': building-other
60
+ '12': building-restaurant
61
+ '13': building-sportsfacility
62
+ '14': building-theater
63
+ '15': event-attack/battle/war/militaryconflict
64
+ '16': event-disaster
65
+ '17': event-election
66
+ '18': event-other
67
+ '19': event-protest
68
+ '20': event-sportsevent
69
+ '21': location-GPE
70
+ '22': location-bodiesofwater
71
+ '23': location-island
72
+ '24': location-mountain
73
+ '25': location-other
74
+ '26': location-park
75
+ '27': location-road/railway/highway/transit
76
+ '28': organization-company
77
+ '29': organization-education
78
+ '30': organization-government/governmentagency
79
+ '31': organization-media/newspaper
80
+ '32': organization-other
81
+ '33': organization-politicalparty
82
+ '34': organization-religion
83
+ '35': organization-showorganization
84
+ '36': organization-sportsleague
85
+ '37': organization-sportsteam
86
+ '38': other-astronomything
87
+ '39': other-award
88
+ '40': other-biologything
89
+ '41': other-chemicalthing
90
+ '42': other-currency
91
+ '43': other-disease
92
+ '44': other-educationaldegree
93
+ '45': other-god
94
+ '46': other-language
95
+ '47': other-law
96
+ '48': other-livingthing
97
+ '49': other-medical
98
+ '50': person-actor
99
+ '51': person-artist/author
100
+ '52': person-athlete
101
+ '53': person-director
102
+ '54': person-other
103
+ '55': person-politician
104
+ '56': person-scholar
105
+ '57': person-soldier
106
+ '58': product-airplane
107
+ '59': product-car
108
+ '60': product-food
109
+ '61': product-game
110
+ '62': product-other
111
+ '63': product-ship
112
+ '64': product-software
113
+ '65': product-train
114
+ '66': product-weapon
115
+ splits:
116
+ - name: train
117
+ num_bytes: 87456461
118
+ num_examples: 130112
119
+ - name: validation
120
+ num_bytes: 10813084
121
+ num_examples: 18817
122
+ - name: test
123
+ num_bytes: 7920453
124
+ num_examples: 14007
125
+ download_size: 19914244
126
+ dataset_size: 106189998
127
+ - config_name: intra
128
+ features:
129
+ - name: id
130
+ dtype: string
131
+ - name: tokens
132
+ sequence: string
133
+ - name: ner_tags
134
+ sequence:
135
+ class_label:
136
+ names:
137
+ '0': O
138
+ '1': art
139
+ '2': building
140
+ '3': event
141
+ '4': location
142
+ '5': organization
143
+ '6': other
144
+ '7': person
145
+ '8': product
146
+ - name: fine_ner_tags
147
+ sequence:
148
+ class_label:
149
+ names:
150
+ '0': O
151
+ '1': art-broadcastprogram
152
+ '2': art-film
153
+ '3': art-music
154
+ '4': art-other
155
+ '5': art-painting
156
+ '6': art-writtenart
157
+ '7': building-airport
158
+ '8': building-hospital
159
+ '9': building-hotel
160
+ '10': building-library
161
+ '11': building-other
162
+ '12': building-restaurant
163
+ '13': building-sportsfacility
164
+ '14': building-theater
165
+ '15': event-attack/battle/war/militaryconflict
166
+ '16': event-disaster
167
+ '17': event-election
168
+ '18': event-other
169
+ '19': event-protest
170
+ '20': event-sportsevent
171
+ '21': location-GPE
172
+ '22': location-bodiesofwater
173
+ '23': location-island
174
+ '24': location-mountain
175
+ '25': location-other
176
+ '26': location-park
177
+ '27': location-road/railway/highway/transit
178
+ '28': organization-company
179
+ '29': organization-education
180
+ '30': organization-government/governmentagency
181
+ '31': organization-media/newspaper
182
+ '32': organization-other
183
+ '33': organization-politicalparty
184
+ '34': organization-religion
185
+ '35': organization-showorganization
186
+ '36': organization-sportsleague
187
+ '37': organization-sportsteam
188
+ '38': other-astronomything
189
+ '39': other-award
190
+ '40': other-biologything
191
+ '41': other-chemicalthing
192
+ '42': other-currency
193
+ '43': other-disease
194
+ '44': other-educationaldegree
195
+ '45': other-god
196
+ '46': other-language
197
+ '47': other-law
198
+ '48': other-livingthing
199
+ '49': other-medical
200
+ '50': person-actor
201
+ '51': person-artist/author
202
+ '52': person-athlete
203
+ '53': person-director
204
+ '54': person-other
205
+ '55': person-politician
206
+ '56': person-scholar
207
+ '57': person-soldier
208
+ '58': product-airplane
209
+ '59': product-car
210
+ '60': product-food
211
+ '61': product-game
212
+ '62': product-other
213
+ '63': product-ship
214
+ '64': product-software
215
+ '65': product-train
216
+ '66': product-weapon
217
+ splits:
218
+ - name: train
219
+ num_bytes: 67631522
220
+ num_examples: 99519
221
+ - name: validation
222
+ num_bytes: 12759787
223
+ num_examples: 19358
224
+ - name: test
225
+ num_bytes: 25768577
226
+ num_examples: 44059
227
+ download_size: 19616006
228
+ dataset_size: 106159886
229
+ - config_name: supervised
230
+ features:
231
+ - name: id
232
+ dtype: string
233
+ - name: tokens
234
+ sequence: string
235
+ - name: ner_tags
236
+ sequence:
237
+ class_label:
238
+ names:
239
+ '0': O
240
+ '1': art
241
+ '2': building
242
+ '3': event
243
+ '4': location
244
+ '5': organization
245
+ '6': other
246
+ '7': person
247
+ '8': product
248
+ - name: fine_ner_tags
249
+ sequence:
250
+ class_label:
251
+ names:
252
+ '0': O
253
+ '1': art-broadcastprogram
254
+ '2': art-film
255
+ '3': art-music
256
+ '4': art-other
257
+ '5': art-painting
258
+ '6': art-writtenart
259
+ '7': building-airport
260
+ '8': building-hospital
261
+ '9': building-hotel
262
+ '10': building-library
263
+ '11': building-other
264
+ '12': building-restaurant
265
+ '13': building-sportsfacility
266
+ '14': building-theater
267
+ '15': event-attack/battle/war/militaryconflict
268
+ '16': event-disaster
269
+ '17': event-election
270
+ '18': event-other
271
+ '19': event-protest
272
+ '20': event-sportsevent
273
+ '21': location-GPE
274
+ '22': location-bodiesofwater
275
+ '23': location-island
276
+ '24': location-mountain
277
+ '25': location-other
278
+ '26': location-park
279
+ '27': location-road/railway/highway/transit
280
+ '28': organization-company
281
+ '29': organization-education
282
+ '30': organization-government/governmentagency
283
+ '31': organization-media/newspaper
284
+ '32': organization-other
285
+ '33': organization-politicalparty
286
+ '34': organization-religion
287
+ '35': organization-showorganization
288
+ '36': organization-sportsleague
289
+ '37': organization-sportsteam
290
+ '38': other-astronomything
291
+ '39': other-award
292
+ '40': other-biologything
293
+ '41': other-chemicalthing
294
+ '42': other-currency
295
+ '43': other-disease
296
+ '44': other-educationaldegree
297
+ '45': other-god
298
+ '46': other-language
299
+ '47': other-law
300
+ '48': other-livingthing
301
+ '49': other-medical
302
+ '50': person-actor
303
+ '51': person-artist/author
304
+ '52': person-athlete
305
+ '53': person-director
306
+ '54': person-other
307
+ '55': person-politician
308
+ '56': person-scholar
309
+ '57': person-soldier
310
+ '58': product-airplane
311
+ '59': product-car
312
+ '60': product-food
313
+ '61': product-game
314
+ '62': product-other
315
+ '63': product-ship
316
+ '64': product-software
317
+ '65': product-train
318
+ '66': product-weapon
319
+ splits:
320
+ - name: train
321
+ num_bytes: 81848645
322
+ num_examples: 131767
323
+ - name: validation
324
+ num_bytes: 11731110
325
+ num_examples: 18824
326
+ - name: test
327
+ num_bytes: 23345314
328
+ num_examples: 37648
329
+ download_size: 24121858
330
+ dataset_size: 116925069
331
+ configs:
332
+ - config_name: inter
333
+ data_files:
334
+ - split: train
335
+ path: inter/train-*
336
+ - split: validation
337
+ path: inter/validation-*
338
+ - split: test
339
+ path: inter/test-*
340
+ - config_name: intra
341
+ data_files:
342
+ - split: train
343
+ path: intra/train-*
344
+ - split: validation
345
+ path: intra/validation-*
346
+ - split: test
347
+ path: intra/test-*
348
+ - config_name: supervised
349
+ data_files:
350
+ - split: train
351
+ path: supervised/train-*
352
+ - split: validation
353
+ path: supervised/validation-*
354
+ - split: test
355
+ path: supervised/test-*
356
  ---
357
 
358
  # Dataset Card for "Few-NERD"
few-nerd.py DELETED
@@ -1,319 +0,0 @@
1
- import os
2
- import json
3
- import datasets
4
- from tqdm.autonotebook import tqdm
5
-
6
-
7
- _CITATION = """
8
- @inproceedings{ding2021few,
9
- title={Few-NERD: A Few-Shot Named Entity Recognition Dataset},
10
- author={Ding, Ning and Xu, Guangwei and Chen, Yulin, and Wang, Xiaobin and Han, Xu and Xie,
11
- Pengjun and Zheng, Hai-Tao and Liu, Zhiyuan},
12
- booktitle={ACL-IJCNLP},
13
- year={2021}
14
- }
15
- """
16
-
17
- _DESCRIPTION = """
18
- Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset,
19
- which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities
20
- and 4,601,223 tokens. Three benchmark tasks are built, one is supervised: Few-NERD (SUP) and the
21
- other two are few-shot: Few-NERD (INTRA) and Few-NERD (INTER).
22
- """
23
-
24
- _LICENSE = "CC BY-SA 4.0"
25
-
26
- # the original data files (zip of .txt) can be downloaded from tsinghua cloud, but we chose to host them on huggingface.co
27
- # for better reliability and download speed
28
- _URL = "https://huggingface.co/datasets/DFKI-SLT/few-nerd/resolve/main/data"
29
- _URLs = {
30
- "supervised": f"{_URL}/supervised.zip",
31
- "intra": f"{_URL}/intra.zip",
32
- "inter": f"{_URL}/inter.zip"
33
- }
34
-
35
- # the label ids, for coarse(NER_TAGS_DICT) and fine(FINE_NER_TAGS_DICT)
36
- NER_TAGS_DICT = {
37
- "O": 0,
38
- "art": 1,
39
- "building": 2,
40
- "event": 3,
41
- "location": 4,
42
- "organization": 5,
43
- "other": 6,
44
- "person": 7,
45
- "product": 8,
46
- }
47
-
48
- FINE_NER_TAGS_DICT = {
49
- "O": 0,
50
- "art-broadcastprogram": 1,
51
- "art-film": 2,
52
- "art-music": 3,
53
- "art-other": 4,
54
- "art-painting": 5,
55
- "art-writtenart": 6,
56
- "building-airport": 7,
57
- "building-hospital": 8,
58
- "building-hotel": 9,
59
- "building-library": 10,
60
- "building-other": 11,
61
- "building-restaurant": 12,
62
- "building-sportsfacility": 13,
63
- "building-theater": 14,
64
- "event-attack/battle/war/militaryconflict": 15,
65
- "event-disaster": 16,
66
- "event-election": 17,
67
- "event-other": 18,
68
- "event-protest": 19,
69
- "event-sportsevent": 20,
70
- "location-GPE": 21,
71
- "location-bodiesofwater": 22,
72
- "location-island": 23,
73
- "location-mountain": 24,
74
- "location-other": 25,
75
- "location-park": 26,
76
- "location-road/railway/highway/transit": 27,
77
- "organization-company": 28,
78
- "organization-education": 29,
79
- "organization-government/governmentagency": 30,
80
- "organization-media/newspaper": 31,
81
- "organization-other": 32,
82
- "organization-politicalparty": 33,
83
- "organization-religion": 34,
84
- "organization-showorganization": 35,
85
- "organization-sportsleague": 36,
86
- "organization-sportsteam": 37,
87
- "other-astronomything": 38,
88
- "other-award": 39,
89
- "other-biologything": 40,
90
- "other-chemicalthing": 41,
91
- "other-currency": 42,
92
- "other-disease": 43,
93
- "other-educationaldegree": 44,
94
- "other-god": 45,
95
- "other-language": 46,
96
- "other-law": 47,
97
- "other-livingthing": 48,
98
- "other-medical": 49,
99
- "person-actor": 50,
100
- "person-artist/author": 51,
101
- "person-athlete": 52,
102
- "person-director": 53,
103
- "person-other": 54,
104
- "person-politician": 55,
105
- "person-scholar": 56,
106
- "person-soldier": 57,
107
- "product-airplane": 58,
108
- "product-car": 59,
109
- "product-food": 60,
110
- "product-game": 61,
111
- "product-other": 62,
112
- "product-ship": 63,
113
- "product-software": 64,
114
- "product-train": 65,
115
- "product-weapon": 66,
116
- }
117
-
118
-
119
- class FewNERDConfig(datasets.BuilderConfig):
120
- """BuilderConfig for FewNERD"""
121
-
122
- def __init__(self, **kwargs):
123
- """BuilderConfig for FewNERD.
124
-
125
- Args:
126
- **kwargs: keyword arguments forwarded to super.
127
- """
128
- super(FewNERDConfig, self).__init__(**kwargs)
129
-
130
-
131
- class FewNERD(datasets.GeneratorBasedBuilder):
132
- BUILDER_CONFIGS = [
133
- FewNERDConfig(name="supervised", description="Fully supervised setting."),
134
- FewNERDConfig(
135
- name="inter",
136
- description="Few-shot setting. Each file contains all 8 coarse "
137
- "types but different fine-grained types.",
138
- ),
139
- FewNERDConfig(
140
- name="intra", description="Few-shot setting. Randomly split by coarse type."
141
- ),
142
- ]
143
-
144
- def _info(self):
145
- return datasets.DatasetInfo(
146
- description=_DESCRIPTION,
147
- features=datasets.Features(
148
- {
149
- "id": datasets.Value("string"),
150
- "tokens": datasets.features.Sequence(datasets.Value("string")),
151
- "ner_tags": datasets.features.Sequence(
152
- datasets.features.ClassLabel(
153
- names=[
154
- "O",
155
- "art",
156
- "building",
157
- "event",
158
- "location",
159
- "organization",
160
- "other",
161
- "person",
162
- "product",
163
- ]
164
- )
165
- ),
166
- "fine_ner_tags": datasets.Sequence(
167
- datasets.features.ClassLabel(
168
- names=[
169
- "O",
170
- "art-broadcastprogram",
171
- "art-film",
172
- "art-music",
173
- "art-other",
174
- "art-painting",
175
- "art-writtenart",
176
- "building-airport",
177
- "building-hospital",
178
- "building-hotel",
179
- "building-library",
180
- "building-other",
181
- "building-restaurant",
182
- "building-sportsfacility",
183
- "building-theater",
184
- "event-attack/battle/war/militaryconflict",
185
- "event-disaster",
186
- "event-election",
187
- "event-other",
188
- "event-protest",
189
- "event-sportsevent",
190
- "location-GPE",
191
- "location-bodiesofwater",
192
- "location-island",
193
- "location-mountain",
194
- "location-other",
195
- "location-park",
196
- "location-road/railway/highway/transit",
197
- "organization-company",
198
- "organization-education",
199
- "organization-government/governmentagency",
200
- "organization-media/newspaper",
201
- "organization-other",
202
- "organization-politicalparty",
203
- "organization-religion",
204
- "organization-showorganization",
205
- "organization-sportsleague",
206
- "organization-sportsteam",
207
- "other-astronomything",
208
- "other-award",
209
- "other-biologything",
210
- "other-chemicalthing",
211
- "other-currency",
212
- "other-disease",
213
- "other-educationaldegree",
214
- "other-god",
215
- "other-language",
216
- "other-law",
217
- "other-livingthing",
218
- "other-medical",
219
- "person-actor",
220
- "person-artist/author",
221
- "person-athlete",
222
- "person-director",
223
- "person-other",
224
- "person-politician",
225
- "person-scholar",
226
- "person-soldier",
227
- "product-airplane",
228
- "product-car",
229
- "product-food",
230
- "product-game",
231
- "product-other",
232
- "product-ship",
233
- "product-software",
234
- "product-train",
235
- "product-weapon",
236
- ]
237
- )
238
- ),
239
- }
240
- ),
241
- supervised_keys=None,
242
- homepage="https://ningding97.github.io/fewnerd/",
243
- citation=_CITATION,
244
- )
245
-
246
- def _split_generators(self, dl_manager):
247
- """Returns SplitGenerators."""
248
- url_to_download = dl_manager.download_and_extract(_URLs[self.config.name])
249
- return [
250
- datasets.SplitGenerator(
251
- name=datasets.Split.TRAIN,
252
- gen_kwargs={
253
- "filepath": os.path.join(
254
- url_to_download,
255
- self.config.name,
256
- "train.txt",
257
- )
258
- },
259
- ),
260
- datasets.SplitGenerator(
261
- name=datasets.Split.VALIDATION,
262
- gen_kwargs={
263
- "filepath": os.path.join(
264
- url_to_download, self.config.name, "dev.txt"
265
- )
266
- },
267
- ),
268
- datasets.SplitGenerator(
269
- name=datasets.Split.TEST,
270
- gen_kwargs={
271
- "filepath": os.path.join(
272
- url_to_download, self.config.name, "test.txt"
273
- )
274
- },
275
- ),
276
- ]
277
-
278
- def _generate_examples(self, filepath=None):
279
- # check file type
280
- assert filepath[-4:] == ".txt"
281
-
282
- num_lines = sum(1 for _ in open(filepath, encoding="utf-8"))
283
- id = 0
284
-
285
- with open(filepath, "r", encoding="utf-8") as f:
286
- tokens, ner_tags, fine_ner_tags = [], [], []
287
- for line in tqdm(f, total=num_lines):
288
- line = line.strip().split()
289
-
290
- if line:
291
- assert len(line) == 2
292
- token, fine_ner_tag = line
293
- ner_tag = fine_ner_tag.split("-")[0]
294
-
295
- tokens.append(token)
296
- ner_tags.append(NER_TAGS_DICT[ner_tag])
297
- fine_ner_tags.append(FINE_NER_TAGS_DICT[fine_ner_tag])
298
-
299
- elif tokens:
300
- # organize a record to be written into json
301
- record = {
302
- "tokens": tokens,
303
- "id": str(id),
304
- "ner_tags": ner_tags,
305
- "fine_ner_tags": fine_ner_tags,
306
- }
307
- tokens, ner_tags, fine_ner_tags = [], [], []
308
- id += 1
309
- yield record["id"], record
310
-
311
- # take the last sentence
312
- if tokens:
313
- record = {
314
- "tokens": tokens,
315
- "id": str(id),
316
- "ner_tags": ner_tags,
317
- "fine_ner_tags": fine_ner_tags,
318
- }
319
- yield record["id"], record
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/inter.zip → inter/test-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1edeb7035f543f0b773bcce438b57198f5093ec8e656c5a2e5356f9e587e485
3
- size 12029124
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73de033f4bae11fb58f3c1ce43e114b194463ee359e5c8e2f0e5edc1920e683b
3
+ size 1551840
data/intra.zip → inter/train-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7936bf060fa9f98b41b8629a6059df20b16a45d4d73ef382e53754afb30bb143
3
- size 11945789
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65fea9cbdcb34728ddd22761cdaf0859e50dd14ae5dc0c77fb306f4330934802
3
+ size 16227216
data/supervised.zip → inter/validation-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6b38b77701bd50b7615c299988180595c02cca4b4060777fd399039b6336f8ad
3
- size 14577157
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ff182cd0ecc939c65dcff22e63fc336c5c8c2309e6e5384eaaddb4ab8629c9a
3
+ size 2135188
intra/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35492f80b3fc07b220e6853dcb3eaec73bf70138ef10291b3caf55dc174e9217
3
+ size 4742040
intra/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d427e6dbbbafa3e3ce99640351075fe2f9e2daab84a602bce47b7e0c60cf9afc
3
+ size 12681898
intra/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:febf702f905680d585aadfa04c4c05226117af9982895820be3028f09cef116f
3
+ size 2192068
supervised/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7ad746fcbeb68fcc235ba7142d7c3723ea2dc39930089e947284defecf300c6
3
+ size 4823735
supervised/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ccb192b1accd3d1754db2244d18ddf64040357fb5b9076a338ec421a72d7d61
3
+ size 16873779
supervised/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d502de918f2a6510179e64bc8b7cfff4e28999188e308f8b0fe75bd71844da66
3
+ size 2424344