Datasets:
File size: 4,790 Bytes
48c5ff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""
from datasets import AutomaticSpeechRecognition
import datasets
import os
import pandas as pd
_CITATION = """\
@misc{cahyawijaya2023crosslingual,
title={Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition},
author={Samuel Cahyawijaya and Holy Lovenia and Willy Chung and Rita Frieske and Zihan Liu and Pascale Fung},
year={2023},
eprint={2306.14517},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
YueMotion is a Cantonese speech emotion dataset.
"""
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/YueMotion"
_URL = "https://huggingface.co/datasets/CAiRE/YueMotion/raw/main/"
_URLS = {
"train": _URL + "train_metadata.csv",
"test": _URL + "test_metadata.csv",
"validation": _URL + "validation_metadata.csv",
"waves": "https://huggingface.co/datasets/CAiRE/YueMotion/resolve/main/data.tar.bz2",
}
class YueMotionConfig(datasets.BuilderConfig):
"""BuilderConfig for YueMotion."""
def __init__(self, name="main", **kwargs):
"""
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(YueMotionConfig, self).__init__(name, **kwargs)
class YueMotion(datasets.GeneratorBasedBuilder):
"""YueMotion: Cantonese speech emotion recognition for both adults and elderly. Snapshot date: 28 June 2023."""
BUILDER_CONFIGS = [
YueMotionConfig(
name="main",
version=datasets.Version("1.0.0", ""),
description=_DESCRIPTION,
)
]
def _info(self):
features = datasets.Features(
{
"split": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"gender": datasets.Value("string"),
"age": datasets.Value("int64"),
"sentence_id": datasets.Value("string"),
"label_id": datasets.Value("int64"),
"label": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_path": downloaded_files["train"],
"wave_path": downloaded_files["waves"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"metadata_path": downloaded_files["test"],
"wave_path": downloaded_files["waves"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"metadata_path": downloaded_files["validation"],
"wave_path": downloaded_files["waves"],
},
),
]
def _generate_examples(self, metadata_path, wave_path):
print(metadata_path)
metadata_df = pd.read_csv(metadata_path)
for index, row in metadata_df.iterrows():
example = {
"split": row["split"],
"speaker_id": row["speaker_id"],
"path": os.path.join(wave_path, row["file_name"]),
"audio": os.path.join(wave_path, row["file_name"]),
"gender": row["gender"],
"age": row["age"],
"sentence_id": row["sentence_id"],
"label_id": row["label_id"],
"label": row["label"],
}
yield index, example |