Datasets:
holylovenia
commited on
Commit
•
48c5ff8
1
Parent(s):
c0079b4
Add dataloader
Browse files- YueMotion.py +139 -0
YueMotion.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Common Voice Dataset"""
|
16 |
+
|
17 |
+
from datasets import AutomaticSpeechRecognition
|
18 |
+
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
import os
|
22 |
+
import pandas as pd
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@misc{cahyawijaya2023crosslingual,
|
27 |
+
title={Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition},
|
28 |
+
author={Samuel Cahyawijaya and Holy Lovenia and Willy Chung and Rita Frieske and Zihan Liu and Pascale Fung},
|
29 |
+
year={2023},
|
30 |
+
eprint={2306.14517},
|
31 |
+
archivePrefix={arXiv},
|
32 |
+
primaryClass={cs.CL}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
YueMotion is a Cantonese speech emotion dataset.
|
38 |
+
"""
|
39 |
+
|
40 |
+
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/YueMotion"
|
41 |
+
|
42 |
+
_URL = "https://huggingface.co/datasets/CAiRE/YueMotion/raw/main/"
|
43 |
+
_URLS = {
|
44 |
+
"train": _URL + "train_metadata.csv",
|
45 |
+
"test": _URL + "test_metadata.csv",
|
46 |
+
"validation": _URL + "validation_metadata.csv",
|
47 |
+
"waves": "https://huggingface.co/datasets/CAiRE/YueMotion/resolve/main/data.tar.bz2",
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
class YueMotionConfig(datasets.BuilderConfig):
|
52 |
+
"""BuilderConfig for YueMotion."""
|
53 |
+
|
54 |
+
def __init__(self, name="main", **kwargs):
|
55 |
+
"""
|
56 |
+
Args:
|
57 |
+
**kwargs: keyword arguments forwarded to super.
|
58 |
+
"""
|
59 |
+
super(YueMotionConfig, self).__init__(name, **kwargs)
|
60 |
+
|
61 |
+
|
62 |
+
class YueMotion(datasets.GeneratorBasedBuilder):
|
63 |
+
"""YueMotion: Cantonese speech emotion recognition for both adults and elderly. Snapshot date: 28 June 2023."""
|
64 |
+
|
65 |
+
BUILDER_CONFIGS = [
|
66 |
+
YueMotionConfig(
|
67 |
+
name="main",
|
68 |
+
version=datasets.Version("1.0.0", ""),
|
69 |
+
description=_DESCRIPTION,
|
70 |
+
)
|
71 |
+
]
|
72 |
+
|
73 |
+
def _info(self):
|
74 |
+
features = datasets.Features(
|
75 |
+
{
|
76 |
+
"split": datasets.Value("string"),
|
77 |
+
"speaker_id": datasets.Value("string"),
|
78 |
+
"path": datasets.Value("string"),
|
79 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
80 |
+
"gender": datasets.Value("string"),
|
81 |
+
"age": datasets.Value("int64"),
|
82 |
+
"sentence_id": datasets.Value("string"),
|
83 |
+
"label_id": datasets.Value("int64"),
|
84 |
+
"label": datasets.Value("string"),
|
85 |
+
}
|
86 |
+
)
|
87 |
+
return datasets.DatasetInfo(
|
88 |
+
description=_DESCRIPTION,
|
89 |
+
features=features,
|
90 |
+
supervised_keys=None,
|
91 |
+
homepage=_HOMEPAGE,
|
92 |
+
citation=_CITATION,
|
93 |
+
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
|
94 |
+
)
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager):
|
97 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
98 |
+
|
99 |
+
return [
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name=datasets.Split.TRAIN,
|
102 |
+
gen_kwargs={
|
103 |
+
"metadata_path": downloaded_files["train"],
|
104 |
+
"wave_path": downloaded_files["waves"],
|
105 |
+
},
|
106 |
+
),
|
107 |
+
datasets.SplitGenerator(
|
108 |
+
name=datasets.Split.TEST,
|
109 |
+
gen_kwargs={
|
110 |
+
"metadata_path": downloaded_files["test"],
|
111 |
+
"wave_path": downloaded_files["waves"],
|
112 |
+
},
|
113 |
+
),
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.VALIDATION,
|
116 |
+
gen_kwargs={
|
117 |
+
"metadata_path": downloaded_files["validation"],
|
118 |
+
"wave_path": downloaded_files["waves"],
|
119 |
+
},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, metadata_path, wave_path):
|
124 |
+
print(metadata_path)
|
125 |
+
metadata_df = pd.read_csv(metadata_path)
|
126 |
+
|
127 |
+
for index, row in metadata_df.iterrows():
|
128 |
+
example = {
|
129 |
+
"split": row["split"],
|
130 |
+
"speaker_id": row["speaker_id"],
|
131 |
+
"path": os.path.join(wave_path, row["file_name"]),
|
132 |
+
"audio": os.path.join(wave_path, row["file_name"]),
|
133 |
+
"gender": row["gender"],
|
134 |
+
"age": row["age"],
|
135 |
+
"sentence_id": row["sentence_id"],
|
136 |
+
"label_id": row["label_id"],
|
137 |
+
"label": row["label"],
|
138 |
+
}
|
139 |
+
yield index, example
|