File size: 4,557 Bytes
eea17d6
196c302
 
 
 
1f015e6
196c302
877a333
1f015e6
196c302
 
 
 
4d66662
196c302
 
 
 
b966160
 
 
 
196c302
b966160
737e980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea17d6
842ea51
 
 
 
 
 
 
 
7a44f43
842ea51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd2808
842ea51
 
 
 
 
7a44f43
842ea51
5cd2808
 
7a44f43
 
5cd2808
7a44f43
842ea51
7a44f43
842ea51
7a44f43
 
 
 
5cd2808
 
7a44f43
5cd2808
 
 
7a44f43
 
 
5cd2808
 
 
 
 
 
7a44f43
 
842ea51
 
 
f953148
842ea51
 
 
7a44f43
842ea51
 
 
7a44f43
842ea51
 
 
7a44f43
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
- zh
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
pretty_name: 'ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in
  Multi-turn Conversation'
tags:
- speech-recognition
- code-switching
dataset_info:
  config_name: main
  features:
  - name: id
    dtype: string
  - name: path
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: transcription
    dtype: string
  - name: duration
    dtype: float32
  - name: language
    dtype: string
  - name: original_speaker_id
    dtype: int64
  - name: session_id
    dtype: int64
  - name: topic
    dtype: string
  splits:
  - name: train
    num_bytes: 1014573740.14
    num_examples: 9869
  - name: test
    num_bytes: 106171230.135
    num_examples: 1315
  - name: validation
    num_bytes: 106772517.43
    num_examples: 1130
  download_size: 1223536062
  dataset_size: 1227517487.7050002
configs:
- config_name: main
  data_files:
  - split: train
    path: main/train-*
  - split: test
    path: main/test-*
  - split: validation
    path: main/validation-*
  default: true
---

# Dataset Card for ASCEND

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Usage](#usage)
- [Dataset Structure](#dataset-structure)
  - [Data Splits](#data-instances)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [Needs More Information]
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/abs/2112.06223
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.

### Supported Tasks and Leaderboards

Code-switching

### Languages

Chinese and English

## Usage

To obtain the full dataset (complete with train, validation, and test set), simply run this:

```
import datasets
dataset = datasets.load_dataset("CAiRE/ASCEND")
```

## Dataset Structure

A typical data point comprises the path to the audio file, the loaded audio array, and its transcription. Additional fields include datapoint id, duration, language, speaker id, session id, and topic.

```
{
	'id': '00644',
	'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
	'audio': {
		'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
		'array': array([-6.1035156e-05, -1.8310547e-04, 3.0517578e-05, ...,
			0.0000000e+00, -3.0517578e-05, 0.0000000e+00
		], dtype = float32),
		'sampling_rate': 16000
	},
	'transcription': '因为你不可能邀你的female friends去说走我们去play basketball',
	'duration': 5.489999771118164,
	'language': 'mixed',
	'original_speaker_id': 3,
	'session_id': 2,
	'topic': 'sports'
}
```

### Data Splits

Number of utterances: 9,869 train, 1,130 validation, and 1,315 test.

## Additional Information

For comprehensive explanations, please check [our paper](https://arxiv.org/pdf/2112.06223.pdf).

### Licensing Information

Creative Common Attribution Share-Alike 4.0 International (CC-BY-SA 4.0)

### Citation Information

If you use our dataset, please cite us:

```
@inproceedings{lovenia2022ascend,
  title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
  author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
  booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)},
  year={2022}
 ```