function
stringlengths
34
1.22k
4.136283578468924+np.sum(array_x, axis=1)*2.784900289786741*array_x[:,0]
np.mean(np.sin(2*np.pi*8.975878163915052)-(np.array(range(1, array_x.shape[1]+1)))*array_x*3.1411107453975466, axis=1)
np.mean(np.exp(np.cos(2*np.pi*array_x+array_x)+6.460806741278501), axis=1)
np.mean(np.exp(7.052114936182164*np.cos(2*np.pi*np.exp(array_x))/np.sqrt(abs((np.array(range(1, array_x.shape[1]+1)))-np.round(8.009952626484523)))), axis=1)
np.round(np.amax(np.sqrt(abs(np.exp(np.sqrt(abs(array_x))-np.round(5.58327675340735)-(np.dot(array_x, np.array([[0.45615033221654855, 0.5684339488686485], [0.018789800436355142, 0.6176354970758771]]))))/6.1034618114130135))+np.square(array_x+7.785843106292946*7.482911535745617), axis=1))
np.mean(3.335897295664028*array_x+9.35322792848649*np.square(6.993949434438722-array_x), axis=1)
6.770578818279777-np.sum(array_x, axis=1)*np.square(2.691366256787627-array_x[:,0])+np.sin(2*np.pi*4.740680751801358-np.sum(array_x, axis=1)*np.square(1.5226862571286162-array_x[:,0]))
np.mean(abs(np.square(8.524991811162566+np.square(array_x)*array_x+np.log(abs(9.762550931378025))+6.556411161002174)), axis=1)+10*(np.sin(2*np.pi*np.mean(abs(np.square(4.130042199649093+np.square(array_x)*array_x+np.log(abs(9.730173541159694))+2.0610716750989035)), axis=1)))
np.mean(np.square(np.exp(array_x)-6.233212155493827), axis=1)
np.log(abs(1/(9.881690770209197)))-3.005802584534701-np.sum(array_x, axis=1)*np.sqrt(abs(-(9.614891614135125)))
np.mean(array_x*(np.dot(array_x, np.array([[0.472413789171073, 0.43825594697170356], [0.20279604118699524, 0.42358763671430444]])))-10*(np.sqrt(abs(array_x)))-6.236667943832458-8.573248101089188, axis=1)
np.mean(np.square(np.round(np.sqrt(abs(8.516318344662334)))+np.square(array_x+1.8679026186957355)), axis=1)
np.mean(-(6.901183443149214/9.781491617041725+array_x+8.035200260385736+10*(np.square(array_x*6.485689159527431)*abs(4.4050443284095335))), axis=1)
np.mean(np.exp(2.776288484749311-np.cos(2*np.pi*6.69986315142833)+array_x), axis=1)+np.sin(2*np.pi*np.mean(np.exp(4.891749937164081-np.cos(2*np.pi*6.236915381700947)+array_x), axis=1))
np.mean(np.square(np.exp(7.474677062043349)-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)/7.257133991174888/np.sin(2*np.pi*2.2663840331096003)), axis=1)
np.mean(abs(np.square(1/(8.93516268887783-10*(8.746103318588283*array_x))-(np.dot(array_x, np.array([[0.617497267667286, 0.9853785645671059], [0.887283151235186, 0.76506994915814]])))+array_x/4.776119716311879)), axis=1)
np.mean(np.square(np.round(4.77159629349679+np.cos(2*np.pi*array_x))), axis=1)
np.mean(array_x-7.163007949175034*2.906100254201511+4.894215564797452-array_x*6.210080570102685, axis=1)
np.mean(9.56742995695761*array_x-3.231723870787132*6.084646942432063, axis=1)
np.mean(np.sqrt(abs(1.6635021640836554))/np.cos(2*np.pi*np.cumsum(np.exp(6.926641952358645-array_x), axis=1)), axis=1)
np.cos(2*np.pi*np.log(abs(6.504505476992524))*np.sum(4.296531971432337+array_x, axis=1))+10*(np.sin(2*np.pi*np.cos(2*np.pi*np.log(abs(3.3885177927644596))*np.sum(4.480801640618201+array_x, axis=1))))
np.mean(np.square(7.216510423101325+(np.dot(array_x, np.array([[0.0588087209344621, 0.5757528450305522], [0.1861301663330024, 0.009247994223699374]])))-array_x), axis=1)
-(np.log(abs(np.sum(1.5475947494002953-np.square(array_x)-array_x*6.454658472151479, axis=1)))*np.sum((np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-5.326982296878666, axis=1))
np.mean(np.cos(2*np.pi*np.sqrt(abs(array_x-6.826764947255343))*abs(1.9315305408458276))*6.263932810041166, axis=1)
np.mean(6.420111234969489+np.sin(2*np.pi*np.sqrt(abs(array_x)))/9.560544614278626, axis=1)+10*(np.sin(2*np.pi*np.mean(2.491719696022541+np.sin(2*np.pi*np.sqrt(abs(array_x)))/3.8837864585961492, axis=1)))
np.square(np.exp(9.200793952147087))/np.sum(np.cumsum(np.square(np.sqrt(abs(array_x-4.852603241630254-9.37370528815844))+3.594953950497331), axis=1), axis=1)
np.mean(np.square(1.2908688213569648+array_x/np.square(10*(7.233148603615375)))/np.sin(2*np.pi*np.cos(2*np.pi*7.683670959325049-array_x))*4.49263737108306, axis=1)
10*(np.mean(np.sin(2*np.pi*array_x/(np.array(range(1, array_x.shape[1]+1)))-4.539300606620479)+np.cumsum(9.021215555998891-array_x, axis=1), axis=1))+np.sin(2*np.pi*10*(np.mean(np.sin(2*np.pi*array_x/(np.array(range(1, array_x.shape[1]+1)))-1.165345788280415)+np.cumsum(3.3538343756634883-array_x, axis=1), axis=1)))
np.mean(np.log(abs(np.sin(2*np.pi*np.cos(2*np.pi*6.4191387003952025/7.235797630893257*array_x/np.square(5.576518695932199/array_x))))), axis=1)
np.mean(8.490725403362934-1/((np.array(range(1, array_x.shape[1]+1)))-array_x)/2.306806179746129-np.sqrt(abs(array_x*array_x))/8.297272023540934, axis=1)
4.7032219916547735-abs(np.mean(array_x*array_x-5.3380870922720565, axis=1))*np.sqrt(abs(np.sqrt(abs(np.mean(np.cos(2*np.pi*array_x*1.442262126536027-5.1716652669449585), axis=1)))))+10*(np.sin(2*np.pi*6.84018065387565-abs(np.mean(array_x*array_x-3.9529088339381673, axis=1))*np.sqrt(abs(np.sqrt(abs(np.mean(np.cos(2*np.pi*array_x*2.80499154118628-6.017365597957982), axis=1)))))))
np.prod(5.8403552406491075*np.sin(2*np.pi*np.square(7.69870515140558+(np.array(range(1, array_x.shape[1]+1)))/6.898681629471271-1/(np.square(3.831726263991792*array_x-8.825042005929625)))), axis=1)
np.mean(np.exp(np.sin(2*np.pi*np.log(abs(3.8864493980121764))))-1/(array_x+np.sin(2*np.pi*4.670998186011243))-array_x, axis=1)
np.mean(np.square(array_x-np.square(6.717678920241155)-5.104991103608113)-np.sqrt(abs(3.886754387387381)), axis=1)
np.mean(10*(np.sqrt(abs(np.cos(2*np.pi*np.square(array_x-8.675609434354037+(np.array(range(1, array_x.shape[1]+1)))))))), axis=1)
np.round(np.mean(abs((np.dot(array_x, np.array([[0.12925954724058308, 0.7222643778520782], [0.30245659798031066, 0.2369650183111639]])))+3.779940630774955-7.067212799966892*array_x+7.670696035897154+2.687223461682721), axis=1))
np.mean(np.sqrt(abs(4.417813195197065))/np.cos(2*np.pi*(np.dot(array_x, np.array([[0.5349498174948405, 0.389791444940793], [0.8005445255305743, 0.7311571458516333]]))))-8.730782454572791+array_x+7.417774010109705, axis=1)
np.mean(np.sin(2*np.pi*10*(np.square(1.9477252584275422))-10*(np.sqrt(abs(array_x+6.509378108242281)))/3.193955933127102), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sin(2*np.pi*10*(np.square(2.6741673503721897))-10*(np.sqrt(abs(array_x+5.004973094515373)))/6.120732032052664), axis=1)))
np.mean(np.exp(abs(6.173686354497348+np.cos(2*np.pi*np.cos(2*np.pi*array_x))))*4.961261931527541-array_x, axis=1)
np.mean(np.square(9.737842164521691+3.8831730345089417+array_x+4.661379537142477+array_x+np.square(1.8632582786352831))/np.log(abs(9.97692242812817)), axis=1)+np.sin(2*np.pi*np.mean(np.square(1.7377513896610561+6.1997188187417045+array_x+5.035753160411411+array_x+np.square(5.935257084025455))/np.log(abs(8.019877918008405)), axis=1))
np.sum(np.sqrt(abs(np.round(array_x)+5.077267072123356-1.3860699551128612)), axis=1)*9.821198952004554+np.sin(2*np.pi*np.sum(np.sqrt(abs(np.round(array_x)+3.2874339982741563-5.837564079632677)), axis=1)*2.4216323830806274)
np.mean(array_x*6.725240811347528+1.9680068430412931, axis=1)
np.mean(np.square(2.0907292105895072)-array_x*2.497150670156776*7.391957907766481, axis=1)
np.mean(6.359679561435067+array_x*7.084882477322617-5.4203747583334625+1/(9.637276611377787-np.cumsum(array_x, axis=1)), axis=1)
np.mean(3.2562470693156635-np.sin(2*np.pi*array_x)*5.786710909539217*np.cos(2*np.pi*np.sqrt(abs(np.sin(2*np.pi*(np.array(range(1, array_x.shape[1]+1)))))))-(np.dot(array_x, np.array([[0.20217727155719156, 0.8682803954620041], [0.19452669350945884, 0.736479759383793]])))+5.127376299436359, axis=1)
10*(np.square(np.amax(array_x/3.6439445742314436, axis=1)-4.888642200268492))
np.mean(np.sqrt(abs((np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+2.381743319934931))-5.0919426555034715-np.round(array_x)*6.654959451648102, axis=1)
np.round(np.square(3.553761958253232-np.mean(8.63481536812237+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T), axis=1)-8.091195286634411*np.sqrt(abs(np.mean(array_x-5.872805469332589, axis=1)+6.126474601104376))))
np.mean(np.log(abs(5.650010285143367))+array_x-5.40928806965739-5.360705372882932*8.34169518084099*-(6.0569648322479175+array_x), axis=1)
np.mean(9.097663834522612+-(np.sqrt(abs(array_x))*9.770045674271266)*1.7462763123116631-np.sin(2*np.pi*1.4754342848141586)-(np.dot(array_x, np.array([[0.9076145585613595, 0.7082831405747101], [0.5282866634645071, 0.6393067680449909]]))), axis=1)
np.exp(np.sum(3.228754722390783+abs(np.log(abs(np.cos(2*np.pi*3.0925130821052416)))*np.cos(2*np.pi*array_x)), axis=1))+np.sin(2*np.pi*np.exp(np.sum(4.122206088089279+abs(np.log(abs(np.cos(2*np.pi*8.536633992327221)))*np.cos(2*np.pi*array_x)), axis=1)))
np.mean(8.091792325403494*np.sqrt(abs(array_x))+9.74824505266965/4.682390285434028-np.square(5.349461980280031)+array_x+10*(array_x)-10*(6.98210486865692-array_x), axis=1)
np.mean(9.190043317483408+array_x-5.506462244494784-10*(6.635339807923575-np.round(1.1657736099329534*array_x)), axis=1)
np.mean(np.sqrt(abs(3.02209769366848))/np.cos(2*np.pi*np.exp(np.sqrt(abs(4.84592147332433+array_x))))+6.831177479832679, axis=1)
np.mean(np.round(np.exp(9.586596147992063+np.sqrt(abs(array_x/4.90287119858806)))-1.4674906858442833-array_x*array_x+2.8657562562160948), axis=1)
np.mean(np.square(2.2329733265323366)-np.exp(np.round(np.round(3.453275570274962+array_x)/np.cos(2*np.pi*1.2152297415325397))), axis=1)
np.mean(array_x-array_x*6.099611561941599+np.square(3.639600608805922), axis=1)
np.mean(8.76235716539799*10*(array_x+9.949529585478373), axis=1)
np.mean(-(1.817630349348473)-7.81546128485422/np.exp(6.84256587471498*array_x-5.516983137581666), axis=1)
np.mean((np.array(range(1, array_x.shape[1]+1)))/8.72572314265517+np.round(9.932635018401234)-array_x+np.sqrt(abs(np.exp(np.sin(2*np.pi*array_x)))), axis=1)+10*(np.sin(2*np.pi*np.mean((np.array(range(1, array_x.shape[1]+1)))/9.223032213215243+np.round(4.67075019951719)-array_x+np.sqrt(abs(np.exp(np.sin(2*np.pi*array_x)))), axis=1)))
np.mean(np.cos(2*np.pi*1.678422930457179)+10*(array_x-1.8001697506337995)-array_x, axis=1)+np.sin(2*np.pi*np.mean(np.cos(2*np.pi*4.055144340599163)+10*(array_x-4.669375478115658)-array_x, axis=1))
10*(np.square(np.sum(np.cos(2*np.pi*array_x), axis=1))+9.045172230403452)
np.round(np.mean(np.exp(np.log(abs(10*(3.249174917345816)))-9.652068189085934*array_x)+10*(6.946734743694687), axis=1))
np.mean(abs((np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+9.755616626581011/np.cos(2*np.pi*array_x*4.5720019651921495)), axis=1)
4.181001379190227+np.mean(abs(array_x), axis=1)*7.2925477325858035
10*(3.037459543723638)*np.mean(np.round(10*(8.88847421923629/(np.array(range(1, array_x.shape[1]+1)))*array_x+(np.array(range(1, array_x.shape[1]+1)))*array_x+(np.array(range(1, array_x.shape[1]+1)))*array_x+1.957394183993173)), axis=1)
np.mean(array_x*8.22024933837005+abs(array_x)-np.sin(2*np.pi*6.506006789287547), axis=1)
np.sum(np.sqrt(abs(np.square((np.dot(array_x, np.array([[0.5107033625017567, 0.3231270948370465], [0.10837922915508758, 0.5922277384495735]]))))+9.815021624072374))*np.square(7.874923324120717-1.287107251533575/7.307156523349449+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)), axis=1)
np.mean(np.sqrt(abs(9.215570561291923-(np.array(range(1, array_x.shape[1]+1)))))/np.sin(2*np.pi*np.sqrt(abs(10*(4.981550553911963)))-10*(np.cos(2*np.pi*array_x))+(np.dot(array_x, np.array([[0.6230921783639061, 0.07107512099836855], [0.05765929484178456, 0.5285518029873957]])))), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sqrt(abs(7.314264463170239-(np.array(range(1, array_x.shape[1]+1)))))/np.sin(2*np.pi*np.sqrt(abs(10*(5.5510679480851985)))-10*(np.cos(2*np.pi*array_x))+(np.dot(array_x, np.array([[0.39677235182614723, 0.7354313313501692], [0.6280621845770293, 0.00030653721113726995]])))), axis=1)))
np.sum(np.cos(2*np.pi*-(abs(array_x)*np.sin(2*np.pi*9.423376824110159)))/5.105575544760486-array_x*4.8913525559024436, axis=1)
np.mean(np.sqrt(abs(4.693887916170553*array_x))*6.619778435146741+9.469654683333909, axis=1)+10*(np.sin(2*np.pi*np.mean(np.sqrt(abs(8.502049826677569*array_x))*8.591975273735507+3.0941140852993527, axis=1)))
np.mean(10*(np.square(array_x)+np.round(array_x+7.458972531851041))+1.130409252126498+np.exp(abs(7.90834987792192)-array_x), axis=1)
np.sum(np.cos(2*np.pi*(np.array(range(1, array_x.shape[1]+1)))*array_x), axis=1)-4.005498616949746
np.mean(np.square(1.2909164460134763*2.061864213696293+array_x-np.square(10*((np.dot(array_x, np.array([[0.24057253304867254, 0.7146926466686183], [0.37827842782121157, 0.8202853381328061]])))+array_x))), axis=1)
np.mean(2.356015778757435+1/(np.cos(2*np.pi*9.645640720827373+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)*(np.array(range(1, array_x.shape[1]+1)))*array_x)), axis=1)
np.prod(np.log(abs(8.83694728305768))+np.sin(2*np.pi*array_x+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)), axis=1)-7.319898464058854+10*(np.sin(2*np.pi*np.prod(np.log(abs(3.3482135876676797))+np.sin(2*np.pi*array_x+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)), axis=1)-8.384688422985377))
np.mean(array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)*np.log(abs(3.049540010404378))-np.square(np.square(4.538437477934659))-10*(1/(9.879280401937379)/7.494047901244333+(np.array(range(1, array_x.shape[1]+1)))-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)), axis=1)
np.mean(np.cos(2*np.pi*8.293188742991088)+np.square(2.7304854943400487)-10*(array_x), axis=1)
np.mean(-(np.sin(2*np.pi*np.round(array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-9.827189427477675-1.6646869656955974)))--((np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+5.780968582358203)*array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+5.45137401144288, axis=1)
np.mean(8.390164691497/(np.array(range(1, array_x.shape[1]+1)))*np.log(abs(4.165018609240487))*10*(3.8246498008196155+array_x), axis=1)
np.mean(np.exp(4.832468474786571-(np.array(range(1, array_x.shape[1]+1)))-array_x/2.335304519476442), axis=1)
np.mean(np.square(3.8850162436914593)-np.cos(2*np.pi*(np.array(range(1, array_x.shape[1]+1)))*array_x)*np.exp(np.sin(2*np.pi*9.226834343815796))*np.log(abs(-(2.7592258293691967*6.762808712957224+(np.array(range(1, array_x.shape[1]+1)))))), axis=1)
np.prod(1.1536204233628888*np.exp(array_x)+5.044065003781345+array_x, axis=1)
np.mean(np.cos(2*np.pi*1.1075776974599658)-4.480599197692905+array_x+10*(array_x), axis=1)+10*(np.sin(2*np.pi*np.mean(np.cos(2*np.pi*2.937739497849214)-6.299924179211045+array_x+10*(array_x), axis=1)))
np.mean(1.7617960929519847-3.499984016373447*array_x, axis=1)+10*(np.sin(2*np.pi*np.mean(9.919125277714146-7.321783159351776*array_x, axis=1)))
np.mean(np.sqrt(abs(9.65892774259302))-np.square(10*(array_x)), axis=1)
np.mean(np.cumsum(np.log(abs(np.log(abs(3.937144713500646))+np.round(1.4890490446114253-np.exp(array_x))*2.252553657782351-array_x*5.49377507937023)), axis=1), axis=1)
np.mean(1/(np.square(np.log(abs(array_x+9.182901898220559)))-2.1328009030221784-np.cumsum(5.862766207167879*(np.dot(array_x, np.array([[0.704714712489314, 0.24506421805655465], [0.8858342792830699, 0.07872360668151168]])))+7.428489988924841-4.507672816618152-2.162039615934648, axis=1)), axis=1)
np.mean(10*(np.square(1.1647692544980761-array_x-9.043237165445376)), axis=1)
np.prod(8.085641848328647*abs((np.dot(array_x, np.array([[0.9166974149125464, 0.8090539283319442], [0.8461596224101573, 0.4045695005342558]]))))-np.log(abs(7.554617137600982)), axis=1)
np.mean(10*(np.sin(2*np.pi*6.772489933028243)+array_x), axis=1)
np.square(np.prod(np.sqrt(abs(5.880305660508704))-np.round(array_x), axis=1)+5.093443315956764)
np.mean(10*(np.cos(2*np.pi*3.2124469421742052-array_x+array_x/7.183434176200435)), axis=1)
1/(7.659578406671137)-np.square(np.sum(array_x+9.283658958040759, axis=1))/4.589224367934701
np.mean(np.square(np.sqrt(abs(np.sqrt(abs(array_x))))-7.477878895836326-np.sin(2*np.pi*3.5993904784937625-array_x-3.776590286078686)), axis=1)
np.log(abs(np.sin(2*np.pi*np.sqrt(abs(np.mean(10*(8.073204901793739+np.round(array_x))+array_x/7.968760838423349*(np.array(range(1, array_x.shape[1]+1))), axis=1))))))
np.mean(10*(abs(9.671188243767435)*np.sqrt(abs(array_x)))-np.cos(2*np.pi*np.round(9.434576044841272-array_x)), axis=1)
np.mean(5.903346885581067+np.cos(2*np.pi*1.4084163187617176)*array_x*array_x*np.log(abs(np.sqrt(abs(7.481027211264508-array_x-array_x))))/np.exp(-(8.998281777376476)), axis=1)+10*(np.sin(2*np.pi*np.mean(3.3143086814998863+np.cos(2*np.pi*7.497016950797653)*array_x*array_x*np.log(abs(np.sqrt(abs(1.3847092251679989-array_x-array_x))))/np.exp(-(7.354087993257962)), axis=1)))
np.mean(7.754403529259358-5.78376534192524*np.cos(2*np.pi*(np.dot(array_x, np.array([[0.7129018174647477, 0.9702856425844043], [0.7035078095014569, 0.42191546558826887]]))))+np.square(np.cos(2*np.pi*(np.dot(array_x, np.array([[0.24553951559255993, 0.5346387665061736], [0.7265661912639075, 0.11659202119486356]])))))/np.log(abs(7.844455465328551)), axis=1)
np.mean(np.exp(array_x-9.821885186903081*np.cos(2*np.pi*4.396538986570257)+6.831111365303761), axis=1)+np.sin(2*np.pi*np.mean(np.exp(array_x-2.7595192060471336*np.cos(2*np.pi*7.529753136538046)+3.716581106498289), axis=1))

No dataset card yet

Downloads last month
3

Models trained or fine-tuned on BasStein/250000-randomfunctions-2d