function
stringlengths
34
1.22k
np.mean((np.array(range(1, array_x.shape[1]+1)))/3.419903559278142*4.28400517832117/np.sqrt(abs(5.786064203160699+array_x))+np.sqrt(abs(5.812525169335714))+array_x*array_x, axis=1)+10*(np.sin(2*np.pi*np.mean((np.array(range(1, array_x.shape[1]+1)))/8.764665057505699*3.344155261768737/np.sqrt(abs(1.84140307861558+array_x))+np.sqrt(abs(3.1145850783590645))+array_x*array_x, axis=1)))
np.mean(np.log(abs(7.696994655787492))-np.exp((np.array(range(1, array_x.shape[1]+1)))-array_x)+array_x/4.889041257548723, axis=1)+np.sin(2*np.pi*np.mean(np.log(abs(8.513530930486825))-np.exp((np.array(range(1, array_x.shape[1]+1)))-array_x)+array_x/4.817776520987, axis=1))
np.mean(np.log(abs(np.square(-(abs(1.4339807303477057+array_x)*array_x+6.901621269475076-4.991583262782207-array_x-np.round(2.559492104875776))))), axis=1)
np.mean(8.793849889323454-(np.dot(array_x, np.array([[0.8955399881464189, 0.37541098830745534], [0.7539019576892919, 0.79723869530204]])))-6.2878991212871576*np.sin(2*np.pi*abs(6.112741819278724-array_x+2.3033624090217195)), axis=1)+np.sin(2*np.pi*np.mean(4.231742592885864-(np.dot(array_x, np.array([[0.910075650850964, 0.049864107582496375], [0.6369182358509429, 0.11322467439064088]])))-4.3742235118991415*np.sin(2*np.pi*abs(2.3419732053152837-array_x+2.389723306769478)), axis=1))
np.mean(array_x-7.8512984217571535/4.073828322926635, axis=1)+10*(np.sin(2*np.pi*np.mean(array_x-9.407799951990352/2.7720002039818246, axis=1)))
np.mean(np.exp(9.105960310671879)+array_x*6.723378851985113, axis=1)
np.mean(10*(10*(np.round(4.281983470745885*array_x)))-2.6937052232082426, axis=1)+np.sin(2*np.pi*np.mean(10*(10*(np.round(9.599652480721007*array_x)))-1.874808167958773, axis=1))
np.sum(np.exp(np.sin(2*np.pi*array_x)), axis=1)-4.343619573843512
np.square(np.mean(np.cos(2*np.pi*np.exp(array_x-8.676670984009515))*(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-array_x-9.714628917804937, axis=1))
np.mean(np.cos(2*np.pi*np.square(3.393875469547855-array_x))-array_x/5.67383561908556, axis=1)+10*(np.sin(2*np.pi*np.mean(np.cos(2*np.pi*np.square(7.949564568466679-array_x))-array_x/9.632981477696498, axis=1)))
np.mean(np.square(10*(1.7437608818138504)+array_x)-4.0574677037615485, axis=1)+np.sin(2*np.pi*np.mean(np.square(10*(5.198538947402701)+array_x)-4.427135938775025, axis=1))
np.amax((np.dot(array_x, np.array([[0.3648370232486575, 0.8349031925859186], [0.9970553616200591, 0.6397035875204129]]))), axis=1)*9.90629949049153+np.sin(2*np.pi*4.22508031888426)*9.116472525600784
np.mean(7.782705782325271+7.284390475914787*array_x, axis=1)
np.mean(np.sin(2*np.pi*np.square(7.385016484636502*7.490052907829583-array_x/4.632946878139701))-1.9726900814707986*np.cos(2*np.pi*np.exp(array_x)), axis=1)
np.mean(np.square(np.round(3.8166766835797112-array_x-8.112877578016084)/9.79328054079845*np.exp(4.416250066293049*(np.dot(array_x, np.array([[0.8261667343909789, 0.4383481738067848], [0.21105325517110252, 0.5176860454473866]])))+array_x*array_x)), axis=1)
np.mean(3.8609522103898657*8.348114810715987*np.cumsum(array_x, axis=1)+1.0645556112520533, axis=1)
10*(np.mean(np.sqrt(abs(array_x)), axis=1)-7.147920346595905)*np.sqrt(abs(6.335930284777333))+array_x[:,0]+np.sin(2*np.pi*10*(np.mean(np.sqrt(abs(array_x)), axis=1)-8.876328187401263)*np.sqrt(abs(9.686813506905407))+array_x[:,0])
np.mean(array_x-array_x-3.08637475976038-array_x*5.300163289219397, axis=1)
np.mean(1/(3.2793880065592074)+np.exp(2.7274642991441027)*np.square(np.exp(array_x+4.992518967263265)), axis=1)
np.mean(10*(2.1915588633985097-(np.dot(array_x, np.array([[0.2839972667995907, 0.9073767031169725], [0.05047776985008401, 0.1607784539214825]]))))-5.310292251739915, axis=1)
np.mean(np.sqrt(abs(3.5909641030918618))/5.979933583664108+array_x+8.201641351419331-array_x*6.000856211158389, axis=1)
np.mean(np.sqrt(abs(np.square(3.1987287169465364*1.6161909822349902-array_x+3.8538010459219407)+np.square(7.185398135503561)-array_x+6.018743654495286)), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sqrt(abs(np.square(5.015767489296069*7.624120907977511-array_x+2.977500503923669)+np.square(1.2204309207037394)-array_x+6.284836128650163)), axis=1)))
np.square(np.mean(array_x-5.885182563536911+array_x/1.4443185906482858*np.square(np.sin(2*np.pi*1.689105950937488))-np.cos(2*np.pi*array_x*(np.dot(array_x, np.array([[0.8298308080565587, 0.9531291761977764], [0.5384552469858013, 0.13948214715433405]])))), axis=1))+np.sin(2*np.pi*np.square(np.mean(array_x-1.8992952200295927+array_x/8.614212388310277*np.square(np.sin(2*np.pi*1.6522260768397696))-np.cos(2*np.pi*array_x*(np.dot(array_x, np.array([[0.3030499487144256, 0.5889476326873601], [0.272405403555824, 0.8024044537170854]])))), axis=1)))
np.mean((np.array(range(1, array_x.shape[1]+1)))+array_x+8.839566061334192/7.562879523257006/np.cos(2*np.pi*array_x+6.6200144230884685*5.372164715438745), axis=1)
np.mean(7.983820777691567-array_x*9.206013742113896+np.square(1.5331720331870575-array_x)/6.440256981254455, axis=1)
np.mean(np.square(array_x+array_x+3.282988537714889*2.237195727078698), axis=1)
np.square(np.cos(2*np.pi*np.exp(9.18472506465202))+np.mean(6.262285269394164-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T), axis=1))
np.mean(np.round(8.37974509975418*(np.dot(array_x, np.array([[0.21954839833185968, 0.015181175940229386], [0.6859155425142527, 0.959643904813469]])))-array_x+7.953082077126619*4.147185956268819*array_x*8.963090301088915-1.2150588902355317), axis=1)+np.sin(2*np.pi*np.mean(np.round(5.385051218991439*(np.dot(array_x, np.array([[0.9856393841307673, 0.5489121935161393], [0.8298998230432589, 0.8279908419160626]])))-array_x+3.681566206166372*6.432367228428561*array_x*7.774280225991115-1.8088893179995913), axis=1))
np.mean(np.exp(6.147375885978338+array_x)+np.square(10*(9.218355976593296))/np.cos(2*np.pi*array_x-array_x), axis=1)+10*(np.sin(2*np.pi*np.mean(np.exp(3.1809331365541667+array_x)+np.square(10*(9.040505501059192))/np.cos(2*np.pi*array_x-array_x), axis=1)))
np.sum(array_x*np.sqrt(abs((np.array(range(1, array_x.shape[1]+1)))-1.0093362057078337))-3.76195538696465, axis=1)+np.square(np.exp(np.mean(7.373482069982341-array_x, axis=1)))
np.mean(4.378272189689051/np.cos(2*np.pi*-(np.sin(2*np.pi*(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+array_x))), axis=1)
np.mean(abs(np.square(np.log(abs(6.270456963411194))+np.sin(2*np.pi*array_x))), axis=1)
np.mean(np.square(5.435964866271113+array_x*6.073911928466918/9.293584438843066/9.690614097940767-array_x), axis=1)
np.mean(-(np.square(7.983280042833353))/np.sin(2*np.pi*6.758727197801446)*(np.dot(array_x, np.array([[0.554215649026915, 0.9939008042619045], [0.0711944276778701, 0.0347888178603839]])))-8.063714726369238, axis=1)
np.mean(np.round(1.3717323337846556)+np.round((np.dot(array_x, np.array([[0.5687087779933555, 0.5287410378776477], [0.6344807470807042, 0.07967919935135404]])))-(np.dot(array_x, np.array([[0.3555033970649736, 0.8442049110891533], [0.7746606562542752, 0.883694483358223]]))))/-(4.979963154867722)-np.square(np.sin(2*np.pi*np.sin(2*np.pi*10*(np.square((np.dot(array_x, np.array([[0.7560063584033611, 0.4701126754964311], [0.3243663714163908, 0.5337365001104265]])))))))-np.square(np.round((np.dot(array_x, np.array([[0.3967590185962706, 0.9574189216639404], [0.9653129936109504, 0.6599176450328872]])))))), axis=1)
np.mean(6.513374939288312-array_x+array_x*8.09608222764401+np.cos(2*np.pi*5.26556003468402), axis=1)
np.round(np.mean(np.sqrt(abs(array_x))*6.18471298888523-np.round(1.6370026191571236)+9.087047063238, axis=1))
np.mean(1.0328817535045232+array_x+1.419192784406433-np.cos(2*np.pi*np.sqrt(abs(array_x+1.051260381177126))+1/((np.array(range(1, array_x.shape[1]+1))))), axis=1)+10*(np.sin(2*np.pi*np.mean(8.446431906611341+array_x+2.8912748343232986-np.cos(2*np.pi*np.sqrt(abs(array_x+9.265155000227052))+1/((np.array(range(1, array_x.shape[1]+1))))), axis=1)))
np.mean(np.exp(2.6813417882139645+5.437815062330543-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)*2.3941082311389636)-np.sin(2*np.pi*9.727072876276539-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T))-7.866681748676367, axis=1)
np.mean(abs(1.8730771221140339-np.cos(2*np.pi*array_x))*9.309829191134646, axis=1)
np.mean(np.exp(3.4487596766211044*np.sqrt(abs(np.round(np.square(7.038320038639769-array_x))))/4.464667317996424), axis=1)
np.mean(4.696670425564189+7.179455653162132/(np.array(range(1, array_x.shape[1]+1)))*array_x+4.3371607376877925+np.sin(2*np.pi*abs((np.array(range(1, array_x.shape[1]+1)))*array_x)+8.231540678600723), axis=1)
np.mean(array_x-np.sqrt(abs(6.519362435461627))-5.792485553936989*np.sin(2*np.pi*9.111635375679127+array_x*9.190025562924996), axis=1)
np.mean(np.log(abs(np.sin(2*np.pi*np.cos(2*np.pi*np.sin(2*np.pi*abs(np.sqrt(abs(array_x+9.07036918307595))*1.9794539681198644)))))), axis=1)
np.prod(np.sin(2*np.pi*2.296161940717712+(np.array(range(1, array_x.shape[1]+1)))-array_x)-np.round(array_x)*8.464038353778255, axis=1)
np.mean(array_x*7.926833192774371+9.712510724964124+2.952120467813227+array_x-np.square(4.148640444892936), axis=1)
np.round(np.mean(np.exp(1.8206926873851912)*array_x+8.622387845397373-np.cos(2*np.pi*5.54591217640972), axis=1))
np.mean(np.square(3.261052313865123)+np.square(array_x-2.4701164729303233*4.177992629679761)-np.sqrt(abs(8.874674990541973)), axis=1)
np.mean(6.7037243966960025+array_x-6.618523991718155, axis=1)+10*(np.sin(2*np.pi*np.mean(9.94762871736522+array_x-7.634625452772094, axis=1)))
10*(6.721329992248019-np.mean(7.331911525178255-array_x, axis=1))+np.sin(2*np.pi*10*(2.894968992068276-np.mean(6.597139208734654-array_x, axis=1)))
np.mean(2.7938262447504028/np.round(np.sin(2*np.pi*3.1889120300813993))-array_x/9.166336922582111, axis=1)+10*(np.sin(2*np.pi*np.mean(3.685076445123775/np.round(np.sin(2*np.pi*6.257982127817868))-array_x/6.745714399978342, axis=1)))
np.mean(6.477046187154551-array_x-6.140488469498658+6.679200258935006*array_x+array_x/np.sqrt(abs(9.624668708873791)), axis=1)+10*(np.sin(2*np.pi*np.mean(3.967617693326541-array_x-3.253731127131479+9.752520018380844*array_x+array_x/np.sqrt(abs(1.5991321045357758)), axis=1)))
np.prod((np.array(range(1, array_x.shape[1]+1)))*array_x+5.235816915976331+np.round(1.0222851083697373)-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-2.6906638887715304/4.497534965855754*(np.array(range(1, array_x.shape[1]+1)))*array_x-2.3173149495713306*(np.array(range(1, array_x.shape[1]+1)))*array_x, axis=1)
np.mean(np.square(np.square(8.45783660433365-5.323872732760769*(np.dot(array_x, np.array([[0.007287515258405541, 0.764002135334996], [0.42336010432286353, 0.9697040890999405]]))))+7.798293925879473+(np.dot(array_x, np.array([[0.33053308482302435, 0.3207820821386621], [0.8089825815706927, 0.1882072127115142]])))+2.127739816587296), axis=1)
np.cos(2*np.pi*7.954009571096586+np.sqrt(abs(np.prod(array_x, axis=1)))+np.sqrt(abs(6.202580485235003)))+10*(np.sin(2*np.pi*np.cos(2*np.pi*4.620873696909674+np.sqrt(abs(np.prod(array_x, axis=1)))+np.sqrt(abs(3.1023515279085605)))))
np.mean(np.cumsum(10*(np.sin(2*np.pi*(np.array(range(1, array_x.shape[1]+1)))*array_x-6.653208924345098*3.0933363209146516/np.exp(7.149214877348822))), axis=1), axis=1)
np.mean(np.sqrt(abs(10*(np.square(np.log(abs(5.042191454362239*(np.array(range(1, array_x.shape[1]+1)))))/np.sin(2*np.pi*array_x+np.sqrt(abs(6.817463627947193))-6.528044965875022))))), axis=1)
np.mean(array_x/8.160699493128748*array_x+np.square(array_x-8.238043757018492), axis=1)
abs(np.sum(np.sqrt(abs(5.870946341811806))/np.cos(2*np.pi*np.sqrt(abs(array_x))-np.cos(2*np.pi*1.605152413269447)), axis=1))
np.mean(np.square(abs(np.square(8.326643551500194+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+(np.dot(array_x, np.array([[0.20227612161480724, 0.9163143472782813], [0.3088265993794097, 0.801999372499561]]))))))/np.cos(2*np.pi*4.777639283302747+9.484997234059358*(np.dot(array_x, np.array([[0.8424280303741558, 0.5592318567700684], [0.5714019755238898, 0.9398833877960966]])))-8.139873621193047/7.560864115921072), axis=1)
np.round(np.mean(np.square(array_x+array_x*np.round(array_x)+1.755974751660042), axis=1))
np.prod(1/(array_x-2.9200896213535956*np.cos(2*np.pi*array_x)), axis=1)
np.mean(np.cumsum(3.48397219112175*array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T), axis=1)+5.3625958912341005-np.round(2.58811828728169-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)), axis=1)
1/(np.mean(np.sqrt(abs(np.cos(2*np.pi*abs(3.125915906297838*array_x-np.cos(2*np.pi*np.exp(np.sqrt(abs(array_x)))))))), axis=1))+10*(np.sin(2*np.pi*1/(np.mean(np.sqrt(abs(np.cos(2*np.pi*abs(2.516216513503216*array_x-np.cos(2*np.pi*np.exp(np.sqrt(abs(array_x)))))))), axis=1))))
np.mean(2.0653635874612712/np.exp(array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T))-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T), axis=1)
np.mean(np.square(9.883156352926811*(np.dot(array_x, np.array([[0.5986106259890006, 0.9874878566780203], [0.22912588503599707, 0.29789855154319855]])))+9.469030108387546-array_x*4.249062517097321)-np.cos(2*np.pi*7.445271813269658), axis=1)+np.sin(2*np.pi*np.mean(np.square(9.874407854913823*(np.dot(array_x, np.array([[0.22079690894337745, 0.7081385447758235], [0.6659744784103846, 0.7707539999361599]])))+1.1020622209458304-array_x*8.801761620325573)-np.cos(2*np.pi*3.8089563622338227), axis=1))
np.square(np.sum((np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-np.sqrt(abs(array_x-np.exp((np.dot(array_x, np.array([[0.9484227353227345, 0.8462729774076146], [0.771726847577698, 0.7309591681143031]])))))), axis=1))
np.mean(np.square(np.square(array_x+6.7192876340534236)*10*(3.7486119832774123))/np.sqrt(abs(6.090170317844557-abs(6.522217265135041*3.0344327774576794-(np.dot(array_x, np.array([[0.7088387714417763, 0.6683045579000371], [0.138232333878471, 0.6771694233169253]])))))), axis=1)
np.mean(9.372932025161207+2.297352506766076*10*(array_x)-2.6195106562626473, axis=1)+np.sin(2*np.pi*np.mean(6.076670016349283+6.029354268242288*10*(array_x)-8.381225849987647, axis=1))
np.prod(3.314677285918033+array_x, axis=1)+4.155137763773823-1/(3.4250045445289707)
np.round(np.prod(np.sqrt(abs(np.sin(2*np.pi*array_x+6.51504155053161-(np.dot(array_x, np.array([[0.2519747556207945, 0.03908265656002041], [0.026543978455041972, 0.5161987787834391]])))*2.1624684762773407))), axis=1)*9.222421111562577)
9.4748203709972*abs(np.amax(np.cos(2*np.pi*np.log(abs(np.sin(2*np.pi*2.754118012308089))))+array_x, axis=1))
np.mean(np.sqrt(abs(np.square(np.square((np.dot(array_x, np.array([[0.994767143231825, 0.21288289967388496], [0.006420954353506314, 0.2286151929490875]])))/3.122661810483707+array_x-8.707031419154752))-np.square(3.6354307087352105-np.sin(2*np.pi*array_x+3.5040116455613606)))), axis=1)
np.mean(np.square(6.203759836631977+array_x/np.log(abs(np.round(6.260471528373989)-np.exp(array_x)))+1.323971885791583), axis=1)
np.mean(1/(abs(array_x)-np.cos(2*np.pi*1.9509776905013956)), axis=1)
2.4206650499920093*abs(np.sum(np.square(array_x), axis=1)-7.222716054421365)+np.sin(2*np.pi*9.622493528888828*abs(np.sum(np.square(array_x), axis=1)-3.1025334877495054))
np.mean(np.cos(2*np.pi*np.exp(array_x*3.2580380198002814))-array_x-3.724775132973552, axis=1)+10*(np.sin(2*np.pi*np.mean(np.cos(2*np.pi*np.exp(array_x*3.9143782314250584))-array_x-4.579421162343944, axis=1)))
np.sqrt(abs(1/(np.cos(2*np.pi*np.mean(np.log(abs((np.array(range(1, array_x.shape[1]+1)))+array_x)), axis=1)))))+np.sin(2*np.pi*np.sqrt(abs(1/(np.cos(2*np.pi*np.mean(np.log(abs((np.array(range(1, array_x.shape[1]+1)))+array_x)), axis=1))))))
np.mean(np.log(abs(2.642820281978147))-np.exp(2.731497206262145*array_x)-np.square(np.square(2.8995863577658683)), axis=1)
np.mean(8.750366443273656*array_x+np.exp(5.643195691946879), axis=1)
np.mean(np.square(5.598951734518069*array_x*array_x)+5.834428263957565+3.5545925116369985, axis=1)+np.sin(2*np.pi*np.mean(np.square(6.961297486455114*array_x*array_x)+3.694020202384043+5.145316794648528, axis=1))
1/(np.log(abs(4.147812990721228)))+np.square(np.prod(np.cos(2*np.pi*np.cos(2*np.pi*(np.array(range(1, array_x.shape[1]+1)))*array_x))-3.796402644575485, axis=1))
np.mean(np.exp(4.89503212303532-array_x-np.sin(2*np.pi*6.820088799820315))+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)/7.52491797823196-7.062639880887762-array_x, axis=1)
np.mean(np.square(4.282559076737864-np.cos(2*np.pi*array_x)/10*(9.640363418940188)), axis=1)
10*(np.cos(2*np.pi*np.prod(np.sqrt(abs(array_x)), axis=1)))+np.sin(2*np.pi*10*(np.cos(2*np.pi*np.prod(np.sqrt(abs(array_x)), axis=1))))
np.round(np.sum(np.exp(array_x)*6.18972225429834, axis=1))
np.mean(-(np.cos(2*np.pi*7.8474927355773705)*np.sin(2*np.pi*4.6140360112652115-array_x)/np.sqrt(abs(np.round(array_x)-6.227875601472397))), axis=1)+10*(np.sin(2*np.pi*np.mean(-(np.cos(2*np.pi*7.932098269165298)*np.sin(2*np.pi*9.626611059802473-array_x)/np.sqrt(abs(np.round(array_x)-1.5617548532160912))), axis=1)))
np.mean(7.816710985932616-6.186599883596217*array_x, axis=1)
np.mean(np.round(np.square(5.825514818703368)-np.sin(2*np.pi*10*(1.9118297521438228+array_x)))*9.20563679262977, axis=1)
np.mean(8.987884856867314-np.exp(array_x)-np.exp(3.076901642681662)+np.exp(np.square(array_x*1.6608154330950073)), axis=1)
np.mean(np.sin(2*np.pi*5.8089956575399375-3.2415441395308995-np.square(array_x)-array_x-np.sqrt(abs(1.4244733595524033))), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sin(2*np.pi*8.005686111218996-8.586669267920964-np.square(array_x)-array_x-np.sqrt(abs(1.9715363238711134))), axis=1)))
np.mean(np.square(np.exp(1.6106030902273023+array_x)), axis=1)
np.sum(np.exp(10*(array_x-np.sin(2*np.pi*abs(2.892015818410543)))), axis=1)
np.cos(2*np.pi*np.sum(10*(1/(4.611590689243056)-array_x), axis=1))+10*(np.sin(2*np.pi*np.cos(2*np.pi*np.sum(10*(1/(9.369057277597493)-array_x), axis=1))))
np.mean(np.square((np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)*2.0185330271138984+2.675756642113818)-8.7367589958445--(array_x)+1/(2.1664950387225983), axis=1)
np.mean(np.sqrt(abs(array_x+array_x+8.43077397936078+4.105891383719669)), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sqrt(abs(array_x+array_x+1.5439345897950032+8.341390432462328)), axis=1)))
np.prod(np.round(np.round(array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T))*np.exp(2.200030859083845)), axis=1)-10*(4.346360955347674)
np.sum(np.log(abs(array_x-np.round(np.exp(9.553278641601395*np.sqrt(abs(array_x)))))), axis=1)/np.mean(1.9893950965234761/array_x, axis=1)-8.169489971885834
np.mean(np.sqrt(abs(3.6151877623895974-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)))+np.exp((np.array(range(1, array_x.shape[1]+1)))+2.7271482228956323)*1.33684435579775/np.sqrt(abs(9.840642920120663*array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+9.110823252107505)), axis=1)
np.mean(np.sqrt(abs(2.782849461608688/8.427735549694798+array_x/8.573568528003737+array_x*7.566980708017748+np.square((np.dot(array_x, np.array([[0.7429561698430612, 0.410771607265359], [0.8154845726744243, 0.2817369650436522]])))+9.438179377718894)*10*(5.074844544293963))), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sqrt(abs(9.205012921892969/9.045339277357629+array_x/3.3967826480601375+array_x*1.9542132527855551+np.square((np.dot(array_x, np.array([[0.9258717012781275, 0.4412281167989329], [0.25980910813772096, 0.8216716404972992]])))+8.251324797998388)*10*(5.004916511821461))), axis=1)))