The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
microgen3D
Dataset Summary
microgen3D is a dataset of 3D voxelized microstructures designed for training, evaluation, and benchmarking of generative models—especially Conditional Latent Diffusion Models (LDMs). It includes both synthetic (Cahn-Hilliard) and experimental microstructures with multiple phases (2 to 3). The voxel grids range from 64³
up to 128×128×64
.
The dataset consists of three microstructure types:
- Experimental microstructures
- 2-phase Cahn-Hilliard microstructures
- 3-phase Cahn-Hilliard microstructures
The two Cahn-Hilliard datasets are thresholded versions of the same simulation source. For each dataset type, we also provide pretrained generative model weights, comprising:
vae.ckpt
– Variational Autoencoderfp.ckpt
– Feature Predictorddpm.ckpt
– Denoising Diffusion Probabilistic Model
📁 Repository Structure
microgen3D/
├── data/
│ └── sample_data.h5 # Experimental or synthetic HDF5 microstructure file
├── models/
│ └── weights/
│ ├── experimental/
│ │ ├── vae.ckpt
│ │ ├── fp.ckpt
│ │ └── ddpm.ckpt
│ ├── two_phase/
│ └── three_phase/
└── ...
🚀 Quick Start
🔧 Setup Instructions
# 1. Clone the repo
git clone https://github.com/baskargroup/MicroGen3D.git
cd MicroGen3D
# 2. Set up environment
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
# 3. Install dependencies
pip install -r requirements.txt
# 4. Download dataset and weights (Hugging Face)
# Make sure HF CLI is installed and you're logged in: `huggingface-cli login`
from huggingface_hub import hf_hub_download
# Download sample data
hf_hub_download(repo_id="BGLab/microgen3D", filename="sample_data.h5", repo_type="dataset", local_dir="data")
# Download model weights
hf_hub_download(repo_id="BGLab/microgen3D", filename="vae.ckpt", local_dir="models/weights/experimental")
hf_hub_download(repo_id="BGLab/microgen3D", filename="fp.ckpt", local_dir="models/weights/experimental")
hf_hub_download(repo_id="BGLab/microgen3D", filename="ddpm.ckpt", local_dir="models/weights/experimental")
⚙️ Configuration
Training Config (config.yaml
)
- task: Auto-generated if left null
- data_path: Path to training dataset (
../data/sample_train.h5
) - model_dir: Directory to save model weights
- batch_size: Batch size for training
- image_shape: Shape of the 3D images
[C, D, H, W]
VAE Settings:
latent_dim_channels
: Latent space channels size.kld_loss_weight
: Weight of KL divergence lossmax_epochs
: Training epochspretrained
: Whether to use pretrained VAEpretrained_path
: Path to pretrained VAE model
FP Settings:
dropout
: Dropout ratemax_epochs
: Training epochspretrained
: Whether to use pretrained FPpretrained_path
: Path to pretrained FP model
DDPM Settings:
timesteps
: Number of diffusion timestepsn_feat
: Number of feature channels for Unet. Higher the channels more model capacity.learning_rate
: Learning ratemax_epochs
: Training epochs
Inference Parameters (params.yaml
)
- data_path: Path to inference/test dataset (
../data/sample_test.h5
)
Training (for model init only):
batch_size
,num_batches
,num_timesteps
,learning_rate
,max_epochs
: Optional parameters
Model:
latent_dim_channels
: Latent space channels size.n_feat
: Number of feature channels for Unet.image_shape
: Expected image input shape
Attributes:
- List of features/targets to predict:
ABS_f_D
CT_f_D_tort1
CT_f_A_tort1
Paths:
ddpm_path
: Path to trained DDPM modelvae_path
: Path to trained VAE modelfc_path
: Path to trained FP modeloutput_dir
: Where to store inference results
🏋️ Training
Navigate to the training folder and run:
cd training
python training.py
🧠 Inference
After training, switch to the inference folder and run:
cd ../inference
python inference.py
📜 Citation
If you use this dataset or models, please cite:
@article{baishnab2025microgen3d,
title={3D Multiphase Heterogeneous Microstructure Generation Using Conditional Latent Diffusion Models},
author={Baishnab, Nirmal and Herron, Ethan and Balu, Aditya and Sarkar, Soumik and Krishnamurthy, Adarsh and Ganapathysubramanian, Baskar},
journal={arXiv preprint arXiv:2503.10711},
year={2025}
}
⚖️ License
This project is licensed under the MIT License.
- Downloads last month
- 134