Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 6 new columns ({'pickup_gps_time', 'time_window_end', 'pickup_time', 'time_window_start', 'pickup_gps_y', 'pickup_gps_x'}) and 4 missing columns ({'delivery_gps_time', 'delivery_gps_x', 'delivery_gps_y', 'delivery_time'}).

This happened while the csv dataset builder was generating data using

hf://datasets/Anonymous-LaEx/Anonymous-LaDe/pickup/pickup_cq.csv (at revision b45ecd9b563f125aa766d2c26fb0085f8a8d16eb)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              order_id: int64
              region_id: int64
              city: string
              courier_id: int64
              accept_time: string
              time_window_start: string
              time_window_end: string
              aoi_id: int64
              aoi_type: int64
              pickup_time: string
              pickup_gps_time: string
              accept_gps_time: string
              ds: int64
              x: double
              y: double
              pickup_gps_x: double
              pickup_gps_y: double
              accept_gps_x: double
              accept_gps_y: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2513
              to
              {'order_id': Value(dtype='int64', id=None), 'region_id': Value(dtype='int64', id=None), 'city': Value(dtype='string', id=None), 'courier_id': Value(dtype='int64', id=None), 'aoi_id': Value(dtype='int64', id=None), 'aoi_type': Value(dtype='int64', id=None), 'accept_time': Value(dtype='string', id=None), 'accept_gps_time': Value(dtype='string', id=None), 'delivery_time': Value(dtype='string', id=None), 'delivery_gps_time': Value(dtype='string', id=None), 'ds': Value(dtype='int64', id=None), 'x': Value(dtype='float64', id=None), 'y': Value(dtype='float64', id=None), 'delivery_gps_x': Value(dtype='float64', id=None), 'delivery_gps_y': Value(dtype='float64', id=None), 'accept_gps_x': Value(dtype='float64', id=None), 'accept_gps_y': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 6 new columns ({'pickup_gps_time', 'time_window_end', 'pickup_time', 'time_window_start', 'pickup_gps_y', 'pickup_gps_x'}) and 4 missing columns ({'delivery_gps_time', 'delivery_gps_x', 'delivery_gps_y', 'delivery_time'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/Anonymous-LaEx/Anonymous-LaDe/pickup/pickup_cq.csv (at revision b45ecd9b563f125aa766d2c26fb0085f8a8d16eb)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

order_id
int64
region_id
int64
city
string
courier_id
int64
aoi_id
int64
aoi_type
int64
accept_time
string
accept_gps_time
string
delivery_time
string
delivery_gps_time
string
ds
int64
x
float64
y
float64
delivery_gps_x
float64
delivery_gps_y
float64
accept_gps_x
float64
accept_gps_y
float64
2,031,782
10
Chongqing
73
50
14
10-22 10:26:00
10-22 10:26:00
10-22 17:04:00
10-22 17:04:00
1,022
0.899804
0.745919
0.899373
0.747651
0.899825
0.747352
4,285,071
10
Chongqing
3,605
50
14
09-07 10:13:00
09-07 10:13:00
09-09 15:44:00
09-09 15:44:00
907
0.89981
0.74593
0.89981
0.74593
0.899822
0.747365
4,056,800
10
Chongqing
3,605
50
14
06-26 09:49:00
06-26 09:49:00
06-27 16:03:00
06-27 16:03:00
626
0.89981
0.745928
0.89981
0.745926
0.899823
0.747365
3,589,481
10
Chongqing
3,605
50
14
09-11 11:01:00
09-11 11:01:00
09-13 17:14:00
09-13 17:14:00
911
0.89981
0.745951
0.89981
0.74595
0.899825
0.747355
2,752,329
10
Chongqing
3,605
50
14
10-01 09:52:00
10-01 09:52:00
10-01 18:30:00
10-01 18:30:00
1,001
0.899807
0.745968
0.899791
0.745965
0.899824
0.747355
659,996
10
Chongqing
3,605
50
14
08-08 19:01:00
08-08 19:01:00
08-11 10:50:00
08-11 10:50:00
808
0.89981
0.745984
0.899809
0.745987
0.899823
0.747364
4,481,765
10
Chongqing
3,605
50
14
09-30 10:00:00
09-30 10:00:00
09-30 16:38:00
09-30 16:38:00
930
0.899807
0.745968
0.899792
0.74597
0.899825
0.747351
2,365,752
10
Chongqing
3,605
50
14
09-30 10:00:00
09-30 10:00:00
09-30 18:38:00
09-30 18:38:00
930
0.899809
0.74593
0.899792
0.74597
0.899825
0.747352
20,671
10
Chongqing
3,605
50
14
05-20 10:06:00
05-20 10:06:00
05-21 15:30:00
05-21 15:30:00
520
0.89981
0.745926
0.89981
0.745925
0.899822
0.747361
965,648
10
Chongqing
3,605
50
14
08-10 10:52:00
08-10 10:52:00
08-12 15:50:00
08-12 15:50:00
810
0.899802
0.745927
0.899801
0.745923
0.899823
0.747364
4,486,215
10
Chongqing
3,605
50
14
10-17 09:39:00
10-17 09:39:00
10-19 16:58:00
10-19 16:58:00
1,017
0.899802
0.745963
0.899802
0.745964
0.899824
0.747353
1,984,854
10
Chongqing
3,605
50
14
10-03 10:05:00
10-03 10:05:00
10-03 18:06:00
10-03 18:06:00
1,003
0.899809
0.745938
0.899792
0.745968
0.899825
0.747351
2,334,342
10
Chongqing
3,605
50
14
10-05 10:21:00
10-05 10:21:00
10-07 15:18:00
10-07 15:18:00
1,005
0.899807
0.745968
0.899792
0.745966
0.899825
0.747354
2,395,322
10
Chongqing
3,605
50
14
05-13 09:22:00
05-13 09:22:00
05-15 09:11:00
05-15 09:11:00
513
0.899806
0.745967
0.899807
0.745964
0.899862
0.747386
629,776
10
Chongqing
3,605
50
14
07-26 10:21:00
07-26 10:21:00
07-27 16:35:00
07-27 16:35:00
726
0.89981
0.745948
0.899811
0.745952
0.899822
0.747362
397,825
10
Chongqing
3,605
50
14
07-07 09:53:00
07-07 09:53:00
07-09 16:26:00
07-09 16:26:00
707
0.899805
0.745969
0.899806
0.745967
0.899822
0.747364
2,742,862
10
Chongqing
3,605
50
14
10-16 10:02:00
10-16 10:02:00
10-18 15:26:00
10-18 15:26:00
1,016
0.899802
0.745942
0.899802
0.745945
0.899824
0.747352
1,952,141
10
Chongqing
1,326
67
14
05-08 09:11:00
05-08 09:11:00
05-10 16:10:00
05-10 16:10:00
508
0.900489
0.754335
0.89986
0.747391
0.899861
0.74739
3,667,238
10
Chongqing
1,326
126
14
05-05 09:03:00
05-05 09:03:00
05-06 14:28:00
05-06 14:28:00
505
0.902729
0.751889
0.89986
0.747391
0.899861
0.747388
1,734,009
10
Chongqing
1,326
126
14
06-27 08:42:00
06-27 08:42:00
06-29 16:22:00
06-29 16:22:00
627
0.902258
0.751994
0.89986
0.747386
0.899823
0.747366
3,098,203
10
Chongqing
1,635
296
14
07-10 08:33:00
07-10 08:33:00
07-10 13:24:00
07-10 13:24:00
710
0.899823
0.747025
0.899824
0.746997
0.899823
0.747366
356,619
10
Chongqing
1,635
296
14
09-09 09:04:00
09-09 09:04:00
09-09 10:49:00
09-09 10:49:00
909
0.899838
0.746963
0.899837
0.746991
0.899823
0.747364
1,484,207
10
Chongqing
1,635
296
14
10-19 08:29:00
10-19 08:29:00
10-19 10:11:00
10-19 10:11:00
1,019
0.899848
0.746972
0.899865
0.746982
0.899824
0.747355
2,628,104
10
Chongqing
1,635
296
14
10-28 10:08:00
10-28 10:08:00
10-28 16:36:00
10-28 16:36:00
1,028
0.899821
0.747019
0.899823
0.746997
0.899825
0.747355
3,602,373
10
Chongqing
1,635
296
14
10-04 08:51:00
10-04 08:51:00
10-04 13:45:00
10-04 13:45:00
1,004
0.899821
0.747022
0.899822
0.746996
0.899824
0.747354
4,241,487
10
Chongqing
1,635
296
14
09-12 08:50:00
09-12 08:50:00
09-12 10:36:00
09-12 10:36:00
912
0.899843
0.74697
0.899851
0.746975
0.899825
0.747355
15,020
10
Chongqing
1,635
296
14
10-28 10:05:00
10-28 10:05:00
10-28 11:58:00
10-28 11:58:00
1,028
0.899844
0.746969
0.89985
0.746973
0.899825
0.747351
3,619,671
10
Chongqing
1,635
296
14
10-14 08:47:00
10-14 08:47:00
10-14 13:33:00
10-14 13:33:00
1,014
0.89982
0.747019
0.899823
0.746999
0.899825
0.747351
2,800,580
10
Chongqing
1,635
296
14
09-13 08:33:00
09-13 08:33:00
09-13 13:49:00
09-13 13:49:00
913
0.899814
0.74704
0.899823
0.746991
0.899824
0.747355
4,480,417
10
Chongqing
1,635
296
14
06-08 09:17:00
06-08 09:17:00
06-08 15:17:00
06-08 15:17:00
608
0.899817
0.747019
0.899821
0.746997
0.899823
0.747362
1,778,761
10
Chongqing
1,635
296
14
05-29 09:33:00
05-29 09:33:00
05-29 15:09:00
05-29 15:09:00
529
0.899813
0.747026
0.899817
0.747102
0.899823
0.747363
1,442,393
10
Chongqing
1,635
296
14
10-27 09:33:00
10-27 09:33:00
10-27 16:03:00
10-27 16:03:00
1,027
0.899814
0.747029
0.899812
0.747026
0.899824
0.747354
3,800,594
10
Chongqing
1,635
296
14
10-19 08:32:00
10-19 08:32:00
10-19 13:56:00
10-19 13:56:00
1,019
0.899836
0.746962
0.899787
0.747069
0.899824
0.747356
2,074,315
10
Chongqing
1,635
296
14
10-18 08:39:00
10-18 08:39:00
10-18 10:37:00
10-18 10:37:00
1,018
0.899831
0.747023
0.899836
0.746993
0.899825
0.747355
1,227,214
10
Chongqing
1,635
296
14
08-26 08:56:00
08-26 08:56:00
08-26 10:44:00
08-26 10:44:00
826
0.899836
0.746962
0.899835
0.746985
0.899822
0.747364
2,999,896
10
Chongqing
1,635
296
14
09-09 09:20:00
09-09 09:20:00
09-09 16:22:00
09-09 16:22:00
909
0.899826
0.746967
0.899823
0.746998
0.899823
0.747364
1,626,606
10
Chongqing
1,635
296
14
08-14 08:40:00
08-14 08:40:00
08-14 09:55:00
08-14 09:55:00
814
0.899835
0.746985
0.899837
0.746991
0.899823
0.747364
308,445
10
Chongqing
1,635
296
14
05-21 08:52:00
05-21 08:52:00
05-21 14:16:00
05-21 14:16:00
521
0.899811
0.74705
0.899822
0.746996
0.899822
0.747361
4,192,593
10
Chongqing
1,635
296
14
05-19 10:24:00
05-19 10:24:00
05-19 11:51:00
05-19 11:51:00
519
0.899826
0.746968
0.899835
0.747
0.899823
0.747363
3,766,518
10
Chongqing
1,635
296
14
06-02 11:06:00
06-02 11:06:00
06-02 14:50:00
06-02 14:50:00
602
0.899848
0.74697
0.899837
0.746984
0.899823
0.747364
3,003,321
10
Chongqing
1,635
296
14
10-29 10:02:00
10-29 10:02:00
10-29 15:58:00
10-29 15:58:00
1,029
0.89982
0.747024
0.899823
0.746996
0.899824
0.747354
3,235,537
10
Chongqing
1,635
296
14
06-14 09:07:00
06-14 09:07:00
06-14 13:25:00
06-14 13:25:00
614
0.899817
0.747016
0.899823
0.746995
0.899822
0.747366
2,633,460
10
Chongqing
1,635
296
14
10-25 09:45:00
10-25 09:45:00
10-25 15:51:00
10-25 15:51:00
1,025
0.899818
0.747017
0.899823
0.746997
0.899825
0.747356
868,940
10
Chongqing
1,635
296
14
05-25 10:51:00
05-25 10:51:00
05-25 13:41:00
05-25 13:41:00
525
0.899835
0.746986
0.899837
0.746986
0.899823
0.747366
1,028,189
10
Chongqing
1,635
296
14
10-23 09:14:00
10-23 09:14:00
10-23 11:05:00
10-23 11:05:00
1,023
0.899837
0.746962
0.899869
0.746934
0.899824
0.747354
2,225,872
10
Chongqing
1,635
296
14
10-08 08:58:00
10-08 08:58:00
10-08 14:59:00
10-08 14:59:00
1,008
0.89982
0.74702
0.899822
0.746996
0.899825
0.747354
2,283,695
10
Chongqing
1,635
296
14
10-20 08:23:00
10-20 08:23:00
10-20 09:40:00
10-20 09:40:00
1,020
0.899825
0.74697
0.899835
0.746987
0.899824
0.747353
2,837,284
10
Chongqing
1,635
296
14
10-16 09:30:00
10-16 09:30:00
10-16 14:03:00
10-16 14:03:00
1,016
0.89982
0.747024
0.899824
0.746997
0.899825
0.747353
1,563,847
10
Chongqing
1,635
296
14
10-16 09:31:00
10-16 09:31:00
10-16 10:50:00
10-16 10:50:00
1,016
0.899848
0.746971
0.899864
0.746987
0.899824
0.747352
4,386,436
10
Chongqing
1,635
296
14
10-31 09:24:00
10-31 09:24:00
10-31 11:20:00
10-31 11:20:00
1,031
0.899849
0.746972
0.899863
0.746984
0.899825
0.747351
3,997,837
10
Chongqing
1,635
296
14
09-30 08:39:00
09-30 08:39:00
09-30 13:36:00
09-30 13:36:00
930
0.899814
0.747041
0.899823
0.746997
0.899824
0.747355
3,277,016
10
Chongqing
1,635
296
14
06-02 11:26:00
06-02 11:26:00
06-02 14:44:00
06-02 14:44:00
602
0.899825
0.746966
0.899838
0.746991
0.899822
0.747363
377,057
10
Chongqing
1,635
296
14
09-21 09:17:00
09-21 09:17:00
09-21 14:23:00
09-21 14:23:00
921
0.89982
0.74702
0.899822
0.746997
0.899825
0.747356
807,845
10
Chongqing
1,635
296
14
10-27 09:57:00
10-27 09:57:00
10-27 16:37:00
10-27 16:37:00
1,027
0.899821
0.747023
0.899822
0.746997
0.899824
0.747352
4,266,115
10
Chongqing
1,635
296
14
10-31 09:17:00
10-31 09:17:00
10-31 11:14:00
10-31 11:14:00
1,031
0.899848
0.746972
0.899837
0.746995
0.899825
0.747353
870,510
10
Chongqing
1,635
296
14
10-31 09:23:00
10-31 09:23:00
10-31 15:38:00
10-31 15:38:00
1,031
0.899817
0.747017
0.899812
0.747041
0.899825
0.747355
2,897,786
10
Chongqing
1,635
296
14
10-26 10:00:00
10-26 10:00:00
10-26 15:45:00
10-26 15:45:00
1,026
0.899821
0.747007
0.899822
0.746998
0.899825
0.747355
1,478,138
10
Chongqing
1,635
296
14
09-18 08:34:00
09-18 08:34:00
09-18 14:33:00
09-18 14:33:00
918
0.89982
0.747022
0.899822
0.746999
0.899824
0.747352
3,939,876
10
Chongqing
1,635
296
14
10-27 09:57:00
10-27 09:57:00
10-27 12:01:00
10-27 12:01:00
1,027
0.899868
0.746957
0.899871
0.746984
0.899825
0.747355
2,273,200
10
Chongqing
1,635
296
14
09-03 09:49:00
09-03 09:49:00
09-03 14:34:00
09-03 14:34:00
903
0.89982
0.747023
0.899823
0.746997
0.899823
0.747364
1,411,013
10
Chongqing
1,635
296
14
10-12 08:54:00
10-12 08:54:00
10-12 10:26:00
10-12 10:26:00
1,012
0.899832
0.747021
0.899837
0.74699
0.899825
0.747356
2,623,086
10
Chongqing
1,635
296
14
10-03 08:47:00
10-03 08:47:00
10-03 10:26:00
10-03 10:26:00
1,003
0.899856
0.746971
0.899865
0.746923
0.899825
0.747354
3,349,653
10
Chongqing
1,635
296
14
08-07 08:44:00
08-07 08:44:00
08-07 09:51:00
08-07 09:51:00
807
0.899849
0.746967
0.899865
0.746923
0.899823
0.747366
102,905
10
Chongqing
1,635
296
14
10-22 10:28:00
10-22 10:28:00
10-22 17:07:00
10-22 17:07:00
1,022
0.899821
0.74702
0.899824
0.746998
0.899825
0.747354
4,206,100
10
Chongqing
1,635
296
14
10-17 08:50:00
10-17 08:50:00
10-17 13:57:00
10-17 13:57:00
1,017
0.899816
0.747017
0.899822
0.746996
0.899824
0.747355
1,529,956
10
Chongqing
1,635
296
14
10-18 08:47:00
10-18 08:47:00
10-18 14:28:00
10-18 14:28:00
1,018
0.89982
0.747022
0.899823
0.746998
0.899825
0.747353
1,621,057
10
Chongqing
1,635
296
14
10-29 09:48:00
10-29 09:48:00
10-29 11:38:00
10-29 11:38:00
1,029
0.899849
0.74697
0.899836
0.746989
0.899825
0.747356
3,443,201
10
Chongqing
1,635
296
14
07-14 09:04:00
07-14 09:04:00
07-14 10:38:00
07-14 10:38:00
714
0.899859
0.746968
0.899862
0.746982
0.899822
0.747365
199,430
10
Chongqing
1,635
296
14
09-28 09:05:00
09-28 09:05:00
09-28 10:30:00
09-28 10:30:00
928
0.899836
0.746962
0.899838
0.746992
0.899824
0.747355
4,240,373
10
Chongqing
1,635
296
14
10-10 09:06:00
10-10 09:06:00
10-10 10:54:00
10-10 10:54:00
1,010
0.899849
0.74697
0.899838
0.746991
0.899825
0.747355
2,566,777
10
Chongqing
1,635
296
14
10-23 09:16:00
10-23 09:16:00
10-23 14:54:00
10-23 14:54:00
1,023
0.89982
0.747022
0.899822
0.746999
0.899824
0.747353
4,181,188
10
Chongqing
1,635
296
14
07-16 09:27:00
07-16 09:27:00
07-16 11:05:00
07-16 11:05:00
716
0.899838
0.746964
0.899837
0.74699
0.899823
0.747361
1,736,306
10
Chongqing
1,635
296
14
08-29 08:46:00
08-29 08:46:00
08-29 14:18:00
08-29 14:18:00
829
0.89982
0.747019
0.899824
0.746997
0.899823
0.747362
595,517
10
Chongqing
1,635
296
14
07-04 09:04:00
07-04 09:04:00
07-04 11:32:00
07-04 11:32:00
704
0.899825
0.746968
0.899837
0.746992
0.899823
0.747365
4,191,331
10
Chongqing
1,635
296
14
09-04 08:57:00
09-04 08:57:00
09-04 10:16:00
09-04 10:16:00
904
0.899844
0.746968
0.899859
0.746916
0.899823
0.747364
101,246
10
Chongqing
1,635
296
14
06-19 09:44:00
06-19 09:44:00
06-19 17:08:00
06-19 17:08:00
619
0.899857
0.746969
0.899867
0.746928
0.899823
0.747363
3,298,992
10
Chongqing
1,635
296
14
10-12 08:53:00
10-12 08:53:00
10-12 10:33:00
10-12 10:33:00
1,012
0.899857
0.746971
0.899869
0.746934
0.899825
0.747355
3,899,253
10
Chongqing
1,635
296
14
10-24 09:27:00
10-24 09:27:00
10-24 11:07:00
10-24 11:07:00
1,024
0.899869
0.746953
0.899869
0.747003
0.899825
0.747351
100,963
10
Chongqing
1,635
296
14
06-03 10:20:00
06-03 10:20:00
06-03 16:50:00
06-03 16:50:00
603
0.899843
0.74697
0.899836
0.746989
0.899823
0.747365
1,146,472
10
Chongqing
1,635
296
14
10-22 10:30:00
10-22 10:30:00
10-22 12:04:00
10-22 12:04:00
1,022
0.899849
0.74697
0.899837
0.746994
0.899825
0.747354
252,323
10
Chongqing
1,635
296
14
09-03 09:46:00
09-03 09:46:00
09-03 11:06:00
09-03 11:06:00
903
0.899836
0.746962
0.899835
0.746984
0.899823
0.747364
4,374,564
10
Chongqing
1,635
296
14
10-19 08:34:00
10-19 08:34:00
10-19 10:02:00
10-19 10:02:00
1,019
0.899835
0.746989
0.899836
0.746989
0.899824
0.747353
2,949,356
10
Chongqing
1,635
296
14
10-19 08:35:00
10-19 08:35:00
10-19 10:19:00
10-19 10:19:00
1,019
0.899844
0.746969
0.899866
0.746925
0.899824
0.747353
3,860,525
10
Chongqing
1,635
296
14
10-19 08:31:00
10-19 08:31:00
10-19 13:32:00
10-19 13:32:00
1,019
0.899817
0.747021
0.899823
0.747001
0.899825
0.747352
1,086,282
10
Chongqing
1,635
296
14
07-31 08:49:00
07-31 08:49:00
07-31 13:41:00
07-31 13:41:00
731
0.899824
0.746993
0.899823
0.746998
0.899822
0.747366
3,765,009
10
Chongqing
1,635
296
14
09-01 08:50:00
09-01 08:50:00
09-01 10:02:00
09-01 10:02:00
901
0.899834
0.746988
0.899836
0.746989
0.899824
0.747365
3,191,559
10
Chongqing
1,635
296
14
10-11 08:30:00
10-11 08:30:00
10-11 13:56:00
10-11 13:56:00
1,011
0.899817
0.747019
0.899823
0.746993
0.899825
0.747352
686,728
10
Chongqing
1,635
296
14
08-28 08:07:00
08-28 08:07:00
08-28 13:46:00
08-28 13:46:00
828
0.89982
0.74702
0.899822
0.746994
0.899823
0.747366
3,098,891
10
Chongqing
1,635
296
14
10-12 08:52:00
10-12 08:52:00
10-12 14:27:00
10-12 14:27:00
1,012
0.89982
0.747023
0.899823
0.746995
0.899825
0.747353
673,108
10
Chongqing
1,635
296
14
05-29 09:38:00
05-29 09:38:00
05-29 11:22:00
05-29 11:22:00
529
0.899832
0.747015
0.899861
0.746984
0.899824
0.747364
743,762
10
Chongqing
1,635
296
14
09-16 09:11:00
09-16 09:11:00
09-16 11:24:00
09-16 11:24:00
916
0.899837
0.746963
0.899837
0.746988
0.899824
0.747353
22,134
10
Chongqing
1,635
296
14
06-16 09:07:00
06-16 09:07:00
06-16 10:32:00
06-16 10:32:00
616
0.899848
0.746969
0.899871
0.746942
0.899823
0.747363
667,134
10
Chongqing
1,635
296
14
06-07 08:43:00
06-07 08:43:00
06-07 14:46:00
06-07 14:46:00
607
0.899814
0.747025
0.899788
0.747056
0.899822
0.747365
3,310,572
10
Chongqing
1,635
296
14
06-26 08:23:00
06-26 08:23:00
06-26 09:25:00
06-26 09:25:00
626
0.899849
0.746969
0.899838
0.746995
0.899823
0.747366
4,271,164
10
Chongqing
1,635
296
14
05-16 09:03:00
05-16 09:03:00
05-16 11:28:00
05-16 11:28:00
516
0.899849
0.746969
0.899869
0.746939
0.899823
0.747365
1,501,745
10
Chongqing
1,635
296
14
10-30 09:00:00
10-30 09:00:00
10-30 14:23:00
10-30 14:23:00
1,030
0.899821
0.747021
0.899823
0.746995
0.899825
0.747354
303,794
10
Chongqing
1,635
296
14
08-26 09:01:00
08-26 09:01:00
08-26 14:52:00
08-26 14:52:00
826
0.89982
0.74702
0.89982
0.747021
0.899823
0.747366
3,771,847
10
Chongqing
1,635
296
14
10-13 09:18:00
10-13 09:18:00
10-13 15:09:00
10-13 15:09:00
1,013
0.899821
0.747023
0.899751
0.746938
0.899825
0.747351
3,101,905
10
Chongqing
1,635
296
14
05-06 09:02:00
05-06 09:02:00
05-06 10:15:00
05-06 10:15:00
506
0.899814
0.747022
0.899805
0.747082
0.899861
0.747387
3,077,304
10
Chongqing
1,635
296
14
09-11 09:57:00
09-11 09:57:00
09-11 15:19:00
09-11 15:19:00
911
0.899821
0.747024
0.899824
0.746996
0.899824
0.747354
End of preview.

Dataset Download: https://huggingface.co/datasets/Anonymous-LaEx/Anonymous-LaDe

Code Link:https://anonymous.4open.science/r/Anonymous-64B3/

1 About Dataset

LaDe is a publicly available last-mile delivery dataset with millions of packages from industry. It has three unique characteristics: (1) Large-scale. It involves 10,677k packages of 21k couriers over 6 months of real-world operation. (2) Comprehensive information, it offers original package information, such as its location and time requirements, as well as task-event information, which records when and where the courier is while events such as task-accept and task-finish events happen. (3) Diversity: the dataset includes data from various scenarios, such as package pick-up and delivery, and from multiple cities, each with its unique spatio-temporal patterns due to their distinct characteristics such as populations. LaDe.png

2 Download

LaDe is composed of two subdatasets: i) LaDe-D, which comes from the package delivery scenario. ii) LaDe-P, which comes from the package pickup scenario. To facilitate the utilization of the dataset, each sub-dataset is presented in CSV format.

LaDe can be used for research purposes. Before you download the dataset, please read these terms. And Code link. Then put the data into "./data/raw/".
The structure of "./data/raw/" should be like:

* ./data/raw/  
    * delivery    
        * delivery_sh.csv   
        * ...    
    * pickup  
        * pickup_sh.csv  
        * ...  

Each sub-dataset contains 5 csv files, with each representing the data from a specific city, the detail of each city can be find in the following table.

City Description
Shanghai One of the most prosperous cities in China, with a large number of orders per day.
Hangzhou A big city with well-developed online e-commerce and a large number of orders per day.
Chongqing A big city with complicated road conditions in China, with a large number of orders.
Jilin A middle-size city in China, with a small number of orders each day.
Yantai A small city in China, with a small number of orders every day.

3 Description

Below is the detailed field of each sub-dataset.

3.1 LaDe-P

Data field Description Unit/format
Package information
package_id Unique identifier of each package Id
time_window_start Start of the required time window Time
time_window_end End of the required time window Time
Stop information
lng/lat Coordinates of each stop Float
city City String
region_id Id of the Region String
aoi_id Id of the AOI (Area of Interest) Id
aoi_type Type of the AOI Categorical
Courier Information
courier_id Id of the courier Id
Task-event Information
accept_time The time when the courier accepts the task Time
accept_gps_time The time of the GPS point closest to accept time Time
accept_gps_lng/lat Coordinates when the courier accepts the task Float
pickup_time The time when the courier picks up the task Time
pickup_gps_time The time of the GPS point closest to pickup_time Time
pickup_gps_lng/lat Coordinates when the courier picks up the task Float
Context information
ds The date of the package pickup Date

3.2 LaDe-D

Data field Description Unit/format
Package information
package_id Unique identifier of each package Id
Stop information
lng/lat Coordinates of each stop Float
city City String
region_id Id of the region Id
aoi_id Id of the AOI Id
aoi_type Type of the AOI Categorical
Courier Information
courier_id Id of the courier Id
Task-event Information
accept_time The time when the courier accepts the task Time
accept_gps_time The time of the GPS point whose time is the closest to accept time Time
accept_gps_lng/accept_gps_lat Coordinates when the courier accepts the task Float
delivery_time The time when the courier finishes delivering the task Time
delivery_gps_time The time of the GPS point whose time is the closest to the delivery time Time
delivery_gps_lng/delivery_gps_lat Coordinates when the courier finishes the task Float
Context information
ds The date of the package delivery Date

4 Leaderboard

Blow shows the performance of different methods in Shanghai.

4.1 Route Prediction

Experimental results of route prediction. We use bold and underlined fonts to denote the best and runner-up model, respectively.

Method HR@3 KRC LSD ED
TimeGreedy 59.81 39.93 5.20 2.24
DistanceGreedy 61.07 42.84 5.35 1.94
OR-Tools 62.50 44.81 4.69 1.88
LightGBM 70.63 54.48 3.27 1.92
FDNET 69.05 ± 0.47 52.72 ± 1.98 4.08 ± 0.29 1.86 ± 0.03
DeepRoute 71.66 ± 0.11 56.20 ± 0.27 3.26 ± 0.08 1.86 ± 0.01
Graph2Route 71.69 ± 0.12 56.53 ± 0.12 3.12 ± 0.01 1.86 ± 0.01
DRL4Route 72.18 ± 0.18 57.20 ± 0.20 3.06 ± 0.02 1.84 ± 0.01

4.2 Estimated Time of Arrival Prediction

Method MAE RMSE ACC@20
LightGBM 17.48 20.39 0.68
SPEED 23.75 27.86 0.58
KNN 21.28 25.36 0.60
MLP 18.58 ± 0.37 21.54 ± 0.34 0.66 ± 0.02
FDNET 18.47 ± 0.31 21.44 ± 0.34 0.67 ± 0.02
RANKETPA 17.18 ± 0.06 20.18 ± 0.08 0.70 ± 0.01

4.3 Spatio-temporal Graph Forecasting

Method MAE RMSE
HA 4.63 9.91
DCRNN 3.69 ± 0.09 7.08 ± 0.12
STGCN 3.04 ± 0.02 6.42 ± 0.05
GWNET 3.16 ± 0.06 6.56 ± 0.11
ASTGCN 3.12 ± 0.06 6.48 ± 0.14
MTGNN 3.13 ± 0.04 6.51 ± 0.13
AGCRN 3.93 ± 0.03 7.99 ± 0.08
STGNCDE 3.74 ± 0.15 7.27 ± 0.16
Downloads last month
89