Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 6,863 Bytes
7faf1fa
8326a8f
 
af7c754
392d7c0
8326a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2f2d7
7faf1fa
 
 
 
 
 
 
bd2f2d7
7faf1fa
 
 
 
bd2f2d7
7faf1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b55aa2
7faf1fa
 
 
8326a8f
7faf1fa
 
 
 
 
4b55aa2
7faf1fa
 
 
 
 
 
 
 
 
 
8326a8f
7faf1fa
 
 
 
 
bd2f2d7
7faf1fa
 
 
4b55aa2
7faf1fa
 
 
4b55aa2
7faf1fa
4b55aa2
7faf1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b55aa2
7faf1fa
 
 
 
 
 
 
 
 
 
bd2f2d7
7faf1fa
 
 
 
 
4b55aa2
7faf1fa
4b55aa2
7faf1fa
 
 
4b55aa2
7faf1fa
bd2f2d7
 
 
 
 
 
7faf1fa
 
4b55aa2
7faf1fa
bd2f2d7
 
 
 
 
 
7faf1fa
 
4b55aa2
7faf1fa
 
 
4b55aa2
7faf1fa
4b55aa2
7faf1fa
 
 
4b55aa2
7faf1fa
 
 
4b55aa2
7faf1fa
 
 
4b55aa2
7faf1fa
4b55aa2
7faf1fa
 
 
4b55aa2
7faf1fa
8326a8f
 
7faf1fa
4b55aa2
7faf1fa
 
8326a8f
 
 
 
 
 
 
 
 
 
 
 
 
7faf1fa
 
 
 
 
e7b12e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- found
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
pretty_name: Answer Sentence Natural Questions (ASNQ)
size_categories:
- 10M<n<100M
source_datasets:
- extended|natural_questions
task_categories:
- multiple-choice
task_ids:
- multiple-choice-qa
paperswithcode_id: asnq
---

# Dataset Card for "asnq"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq](https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection](https://arxiv.org/abs/1911.04118)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 3398.76 MB
- **Size of the generated dataset:** 3647.70 MB
- **Total amount of disk used:** 7046.46 MB

### Dataset Summary

ASNQ is a dataset for answer sentence selection derived from
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).

Each example contains a question, candidate sentence, label indicating whether or not
the sentence answers the question, and two additional features --
sentence_in_long_answer and short_answer_in_sentence indicating whether ot not the
candidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.

For more details please see
https://arxiv.org/abs/1911.04118

and

https://research.google/pubs/pub47761/

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### default

- **Size of downloaded dataset files:** 3398.76 MB
- **Size of the generated dataset:** 3647.70 MB
- **Total amount of disk used:** 7046.46 MB

An example of 'validation' looks as follows.
```
{
    "label": 0,
    "question": "when did somewhere over the rainbow come out",
    "sentence": "In films and TV shows ( edit ) In the film Third Finger , Left Hand ( 1940 ) with Myrna Loy , Melvyn Douglas , and Raymond Walburn , the tune played throughout the film in short sequences .",
    "sentence_in_long_answer": false,
    "short_answer_in_sentence": false
}
```

### Data Fields

The data fields are the same among all splits.

#### default
- `question`: a `string` feature.
- `sentence`: a `string` feature.
- `label`: a classification label, with possible values including `neg` (0), `pos` (1).
- `sentence_in_long_answer`: a `bool` feature.
- `short_answer_in_sentence`: a `bool` feature.

### Data Splits

| name  | train  |validation|
|-------|-------:|---------:|
|default|20377568|    930062|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

The data is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License:
https://github.com/alexa/wqa_tanda/blob/master/LICENSE

### Citation Information

```
@article{Garg_2020,
   title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},
   volume={34},
   ISSN={2159-5399},
   url={http://dx.doi.org/10.1609/AAAI.V34I05.6282},
   DOI={10.1609/aaai.v34i05.6282},
   number={05},
   journal={Proceedings of the AAAI Conference on Artificial Intelligence},
   publisher={Association for the Advancement of Artificial Intelligence (AAAI)},
   author={Garg, Siddhant and Vu, Thuy and Moschitti, Alessandro},
   year={2020},
   month={Apr},
   pages={7780–7788}
}
```

### Contributions

Thanks to [@mkserge](https://github.com/mkserge) for adding this dataset.