Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10M - 100M
ArXiv:
License:
File size: 7,349 Bytes
7faf1fa 8326a8f b7e10b5 8326a8f bd2f2d7 b7e10b5 ebd2dc1 b7e10b5 ebd2dc1 772b8e0 ebd2dc1 772b8e0 ebd2dc1 772b8e0 7faf1fa bd2f2d7 7faf1fa bd2f2d7 7faf1fa 4b55aa2 7faf1fa 8326a8f 7faf1fa 515ac1f 7faf1fa 4b55aa2 7faf1fa 8326a8f 7faf1fa bd2f2d7 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 515ac1f 7faf1fa 4b55aa2 7faf1fa bd2f2d7 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa bd2f2d7 7faf1fa 4b55aa2 7faf1fa bd2f2d7 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 4b55aa2 7faf1fa 8326a8f 7faf1fa 4b55aa2 7faf1fa 8326a8f 7faf1fa ebd2dc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 10M<n<100M
source_datasets:
- extended|natural_questions
task_categories:
- multiple-choice
task_ids:
- multiple-choice-qa
paperswithcode_id: asnq
pretty_name: Answer Sentence Natural Questions (ASNQ)
dataset_info:
features:
- name: question
dtype: string
- name: sentence
dtype: string
- name: label
dtype:
class_label:
names:
'0': neg
'1': pos
- name: sentence_in_long_answer
dtype: bool
- name: short_answer_in_sentence
dtype: bool
splits:
- name: train
num_bytes: 3656865072
num_examples: 20377568
- name: validation
num_bytes: 168004403
num_examples: 930062
download_size: 1482064429
dataset_size: 3824869475
---
# Dataset Card for "asnq"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq](https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection](https://arxiv.org/abs/1911.04118)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 3.56 GB
- **Size of the generated dataset:** 3.82 GB
- **Total amount of disk used:** 7.39 GB
### Dataset Summary
ASNQ is a dataset for answer sentence selection derived from
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
Each example contains a question, candidate sentence, label indicating whether or not
the sentence answers the question, and two additional features --
sentence_in_long_answer and short_answer_in_sentence indicating whether ot not the
candidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.
For more details please see
https://arxiv.org/abs/1911.04118
and
https://research.google/pubs/pub47761/
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 3.56 GB
- **Size of the generated dataset:** 3.82 GB
- **Total amount of disk used:** 7.39 GB
An example of 'validation' looks as follows.
```
{
"label": 0,
"question": "when did somewhere over the rainbow come out",
"sentence": "In films and TV shows ( edit ) In the film Third Finger , Left Hand ( 1940 ) with Myrna Loy , Melvyn Douglas , and Raymond Walburn , the tune played throughout the film in short sequences .",
"sentence_in_long_answer": false,
"short_answer_in_sentence": false
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `question`: a `string` feature.
- `sentence`: a `string` feature.
- `label`: a classification label, with possible values including `neg` (0), `pos` (1).
- `sentence_in_long_answer`: a `bool` feature.
- `short_answer_in_sentence`: a `bool` feature.
### Data Splits
| name | train |validation|
|-------|-------:|---------:|
|default|20377568| 930062|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The data is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License:
https://github.com/alexa/wqa_tanda/blob/master/LICENSE
### Citation Information
```
@article{Garg_2020,
title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},
volume={34},
ISSN={2159-5399},
url={http://dx.doi.org/10.1609/AAAI.V34I05.6282},
DOI={10.1609/aaai.v34i05.6282},
number={05},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
publisher={Association for the Advancement of Artificial Intelligence (AAAI)},
author={Garg, Siddhant and Vu, Thuy and Moschitti, Alessandro},
year={2020},
month={Apr},
pages={7780–7788}
}
```
### Contributions
Thanks to [@mkserge](https://github.com/mkserge) for adding this dataset. |