Datasets:
ArXiv:
DOI:
License:
File size: 16,109 Bytes
01b1ca5 b5c6862 01b1ca5 b5c6862 01b1ca5 d5333b8 01b1ca5 e9dd25b 01b1ca5 6e479d6 01b1ca5 b5c6862 01b1ca5 cb1efb2 a40c87a e9dd25b 9c0aeec 01b1ca5 a40c87a 01b1ca5 9c0aeec 2fa7223 9c0aeec 4023dde 2fa7223 01b1ca5 b5c6862 9c0aeec 01b1ca5 2fa7223 9c0aeec 01b1ca5 9c0aeec 2fa7223 01b1ca5 a40c87a 01b1ca5 9c0aeec a40c87a 9c0aeec 01b1ca5 a40c87a 2c10c18 2fa7223 2c10c18 4023dde 2fa7223 6e479d6 2c10c18 2fa7223 4023dde 2c10c18 4023dde 2c10c18 4023dde 2c10c18 2fa7223 4023dde 2c10c18 01b1ca5 7e4ffb0 f818c34 a40c87a 01b1ca5 6e479d6 01b1ca5 f65c733 2c10c18 4023dde f65c733 4023dde a40c87a f65c733 2c10c18 f65c733 2c10c18 f65c733 2c10c18 9c0aeec f65c733 2c10c18 4023dde 2c10c18 f65c733 a40c87a de7f72c f65c733 2c10c18 9c0aeec f65c733 2c10c18 f65c733 4023dde 2c10c18 de7f72c f65c733 2c10c18 4023dde 2c10c18 6e479d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
# Lint as: python3
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
from typing import Dict, List, Optional, Tuple, Union
import datasets
import fsspec
import h5py
import numpy as np
import torch
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {NCEDC dataset for QuakeFlow},
author={Zhu et al.},
year={2023}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5"
_FILES = [
"1987.h5",
"1988.h5",
"1989.h5",
"1990.h5",
"1991.h5",
"1992.h5",
"1993.h5",
"1994.h5",
"1995.h5",
"1996.h5",
"1997.h5",
"1998.h5",
"1999.h5",
"2000.h5",
"2001.h5",
"2002.h5",
"2003.h5",
"2004.h5",
"2005.h5",
"2006.h5",
"2007.h5",
"2008.h5",
"2009.h5",
"2010.h5",
"2011.h5",
"2012.h5",
"2013.h5",
"2014.h5",
"2015.h5",
"2016.h5",
"2017.h5",
"2018.h5",
"2019.h5",
"2020.h5",
"2021.h5",
"2022.h5",
"2023.h5",
]
_URLS = {
"station": [f"{_REPO}/{x}" for x in _FILES],
"event": [f"{_REPO}/{x}" for x in _FILES],
"station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
"event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
"station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
"event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
}
class BatchBuilderConfig(datasets.BuilderConfig):
"""
yield a batch of event-based sample, so the number of sample stations can vary among batches
Batch Config for QuakeFlow_NC
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
VERSION = datasets.Version("1.1.0")
nt = 8192
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset"
),
datasets.BuilderConfig(
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset"
),
datasets.BuilderConfig(
name="station_train",
version=VERSION,
description="yield station-based samples one by one of training dataset",
),
datasets.BuilderConfig(
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset"
),
datasets.BuilderConfig(
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset"
),
datasets.BuilderConfig(
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset"
),
]
DEFAULT_CONFIG_NAME = (
"station_test" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if (
(self.config.name == "station")
or (self.config.name == "station_train")
or (self.config.name == "station_test")
):
features = datasets.Features(
{
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
"phase_time": datasets.Sequence(datasets.Value("string")),
"phase_index": datasets.Sequence(datasets.Value("int32")),
"phase_type": datasets.Sequence(datasets.Value("string")),
"phase_polarity": datasets.Sequence(datasets.Value("string")),
"begin_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"event_time": datasets.Value("string"),
"event_time_index": datasets.Value("int32"),
"event_location": datasets.Sequence(datasets.Value("float32")),
"station_location": datasets.Sequence(datasets.Value("float32")),
},
)
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
features = datasets.Features(
{
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
"phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
"phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"begin_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"event_time": datasets.Value("string"),
"event_time_index": datasets.Value("int32"),
"event_location": datasets.Sequence(datasets.Value("float32")),
"station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
},
)
else:
raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS")
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
# files = dl_manager.download(urls)
files = dl_manager.download_and_extract(urls)
# files = ["waveform_h5/1989.h5", "waveform_h5/1990.h5"]
print(files)
if self.config.name == "station" or self.config.name == "event":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files[:-1],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": files[-1:], "split": "test"},
),
]
elif self.config.name == "station_train" or self.config.name == "event_train":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": files,
"split": "train",
},
),
]
elif self.config.name == "station_test" or self.config.name == "event_test":
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": files, "split": "test"},
),
]
else:
raise ValueError("config.name is not in BUILDER_CONFIGS")
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
for file in filepath:
with fsspec.open(file, "rb") as fs:
with h5py.File(fs, "r") as fp:
event_ids = list(fp.keys())
for event_id in event_ids:
event = fp[event_id]
event_attrs = event.attrs
begin_time = event_attrs["begin_time"]
end_time = event_attrs["end_time"]
event_location = [
event_attrs["longitude"],
event_attrs["latitude"],
event_attrs["depth_km"],
]
event_time = event_attrs["event_time"]
event_time_index = event_attrs["event_time_index"]
station_ids = list(event.keys())
if len(station_ids) == 0:
continue
if (
(self.config.name == "station")
or (self.config.name == "station_train")
or (self.config.name == "station_test")
):
waveforms = np.zeros([3, self.nt], dtype="float32")
for i, sta_id in enumerate(station_ids):
waveforms[:, : self.nt] = event[sta_id][:, : self.nt]
attrs = event[sta_id].attrs
phase_type = attrs["phase_type"]
phase_time = attrs["phase_time"]
phase_index = attrs["phase_index"]
phase_polarity = attrs["phase_polarity"]
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
yield f"{event_id}/{sta_id}", {
"data": waveforms,
"phase_time": phase_time,
"phase_index": phase_index,
"phase_type": phase_type,
"phase_polarity": phase_polarity,
"begin_time": begin_time,
"end_time": end_time,
"event_time": event_time,
"event_time_index": event_time_index,
"event_location": event_location,
"station_location": station_location,
}
elif (
(self.config.name == "event")
or (self.config.name == "event_train")
or (self.config.name == "event_test")
):
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
phase_type = []
phase_time = []
phase_index = []
phase_polarity = []
station_location = []
for i, sta_id in enumerate(station_ids):
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt]
attrs = event[sta_id].attrs
phase_type.append(list(attrs["phase_type"]))
phase_time.append(list(attrs["phase_time"]))
phase_index.append(list(attrs["phase_index"]))
phase_polarity.append(list(attrs["phase_polarity"]))
station_location.append(
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
)
yield event_id, {
"data": waveforms,
"phase_time": phase_time,
"phase_index": phase_index,
"phase_type": phase_type,
"phase_polarity": phase_polarity,
"begin_time": begin_time,
"end_time": end_time,
"event_time": event_time,
"event_time_index": event_time_index,
"event_location": event_location,
"station_location": station_location,
}
|