Datasets:

ArXiv:
DOI:
License:
File size: 16,109 Bytes
01b1ca5
 
 
 
 
 
 
 
 
 
 
 
 
b5c6862
01b1ca5
b5c6862
 
01b1ca5
 
d5333b8
01b1ca5
 
e9dd25b
 
 
 
01b1ca5
 
 
 
 
6e479d6
 
 
01b1ca5
 
 
 
 
 
b5c6862
01b1ca5
 
 
 
 
 
 
 
 
 
 
cb1efb2
a40c87a
e9dd25b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c0aeec
01b1ca5
a40c87a
 
 
 
 
 
01b1ca5
 
9c0aeec
2fa7223
 
 
 
 
9c0aeec
4023dde
2fa7223
 
01b1ca5
 
b5c6862
 
9c0aeec
01b1ca5
 
2fa7223
9c0aeec
01b1ca5
 
 
 
 
 
 
 
 
 
 
9c0aeec
2fa7223
01b1ca5
a40c87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b1ca5
 
9c0aeec
a40c87a
9c0aeec
01b1ca5
 
 
a40c87a
 
 
 
 
2c10c18
2fa7223
2c10c18
 
 
 
 
 
 
4023dde
 
2fa7223
6e479d6
2c10c18
 
 
 
2fa7223
4023dde
 
 
 
 
2c10c18
 
4023dde
 
2c10c18
4023dde
2c10c18
2fa7223
4023dde
 
2c10c18
01b1ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e4ffb0
f818c34
 
a40c87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b1ca5
 
 
 
 
6e479d6
01b1ca5
f65c733
 
 
 
 
2c10c18
 
 
 
 
 
 
 
4023dde
 
f65c733
4023dde
 
a40c87a
 
 
 
 
f65c733
2c10c18
f65c733
2c10c18
f65c733
2c10c18
 
 
 
9c0aeec
f65c733
 
2c10c18
 
 
 
 
 
 
4023dde
 
2c10c18
 
f65c733
 
a40c87a
 
 
 
 
de7f72c
f65c733
2c10c18
 
 
 
 
9c0aeec
f65c733
2c10c18
f65c733
4023dde
 
 
 
2c10c18
 
de7f72c
f65c733
2c10c18
 
 
 
 
 
 
4023dde
 
2c10c18
 
6e479d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: Address all TODOs and remove all explanatory comments
# Lint as: python3
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""


from typing import Dict, List, Optional, Tuple, Union

import datasets
import fsspec
import h5py
import numpy as np
import torch

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {NCEDC dataset for QuakeFlow},
author={Zhu et al.},
year={2023}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5"
_FILES = [
    "1987.h5",
    "1988.h5",
    "1989.h5",
    "1990.h5",
    "1991.h5",
    "1992.h5",
    "1993.h5",
    "1994.h5",
    "1995.h5",
    "1996.h5",
    "1997.h5",
    "1998.h5",
    "1999.h5",
    "2000.h5",
    "2001.h5",
    "2002.h5",
    "2003.h5",
    "2004.h5",
    "2005.h5",
    "2006.h5",
    "2007.h5",
    "2008.h5",
    "2009.h5",
    "2010.h5",
    "2011.h5",
    "2012.h5",
    "2013.h5",
    "2014.h5",
    "2015.h5",
    "2016.h5",
    "2017.h5",
    "2018.h5",
    "2019.h5",
    "2020.h5",
    "2021.h5",
    "2022.h5",
    "2023.h5",
]
_URLS = {
    "station": [f"{_REPO}/{x}" for x in _FILES],
    "event": [f"{_REPO}/{x}" for x in _FILES],
    "station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
    "event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
    "station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
    "event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
}


class BatchBuilderConfig(datasets.BuilderConfig):
    """
    yield a batch of event-based sample, so the number of sample stations can vary among batches
    Batch Config for QuakeFlow_NC
    """

    def __init__(self, **kwargs):
        super().__init__(**kwargs)


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
    """QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""

    VERSION = datasets.Version("1.1.0")

    nt = 8192

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')

    # default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="station", version=VERSION, description="yield station-based samples one by one of whole dataset"
        ),
        datasets.BuilderConfig(
            name="event", version=VERSION, description="yield event-based samples one by one of whole dataset"
        ),
        datasets.BuilderConfig(
            name="station_train",
            version=VERSION,
            description="yield station-based samples one by one of training dataset",
        ),
        datasets.BuilderConfig(
            name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset"
        ),
        datasets.BuilderConfig(
            name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset"
        ),
        datasets.BuilderConfig(
            name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset"
        ),
    ]

    DEFAULT_CONFIG_NAME = (
        "station_test"  # It's not mandatory to have a default configuration. Just use one if it make sense.
    )

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if (
            (self.config.name == "station")
            or (self.config.name == "station_train")
            or (self.config.name == "station_test")
        ):
            features = datasets.Features(
                {
                    "data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
                    "phase_time": datasets.Sequence(datasets.Value("string")),
                    "phase_index": datasets.Sequence(datasets.Value("int32")),
                    "phase_type": datasets.Sequence(datasets.Value("string")),
                    "phase_polarity": datasets.Sequence(datasets.Value("string")),
                    "begin_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "event_time": datasets.Value("string"),
                    "event_time_index": datasets.Value("int32"),
                    "event_location": datasets.Sequence(datasets.Value("float32")),
                    "station_location": datasets.Sequence(datasets.Value("float32")),
                },
            )
        elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
            features = datasets.Features(
                {
                    "data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
                    "phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
                    "phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "begin_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "event_time": datasets.Value("string"),
                    "event_time_index": datasets.Value("int32"),
                    "event_location": datasets.Sequence(datasets.Value("float32")),
                    "station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                },
            )
        else:
            raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS")

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        # files = dl_manager.download(urls)
        files = dl_manager.download_and_extract(urls)
        # files = ["waveform_h5/1989.h5", "waveform_h5/1990.h5"]
        print(files)

        if self.config.name == "station" or self.config.name == "event":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": files[:-1],
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": files[-1:], "split": "test"},
                ),
            ]
        elif self.config.name == "station_train" or self.config.name == "event_train":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": files,
                        "split": "train",
                    },
                ),
            ]
        elif self.config.name == "station_test" or self.config.name == "event_test":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": files, "split": "test"},
                ),
            ]
        else:
            raise ValueError("config.name is not in BUILDER_CONFIGS")

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.

        for file in filepath:
            with fsspec.open(file, "rb") as fs:
                with h5py.File(fs, "r") as fp:
                    event_ids = list(fp.keys())
                    for event_id in event_ids:
                        event = fp[event_id]
                        event_attrs = event.attrs
                        begin_time = event_attrs["begin_time"]
                        end_time = event_attrs["end_time"]
                        event_location = [
                            event_attrs["longitude"],
                            event_attrs["latitude"],
                            event_attrs["depth_km"],
                        ]
                        event_time = event_attrs["event_time"]
                        event_time_index = event_attrs["event_time_index"]
                        station_ids = list(event.keys())
                        if len(station_ids) == 0:
                            continue
                        if (
                            (self.config.name == "station")
                            or (self.config.name == "station_train")
                            or (self.config.name == "station_test")
                        ):
                            waveforms = np.zeros([3, self.nt], dtype="float32")

                            for i, sta_id in enumerate(station_ids):
                                waveforms[:, : self.nt] = event[sta_id][:, : self.nt]
                                attrs = event[sta_id].attrs
                                phase_type = attrs["phase_type"]
                                phase_time = attrs["phase_time"]
                                phase_index = attrs["phase_index"]
                                phase_polarity = attrs["phase_polarity"]
                                station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]

                                yield f"{event_id}/{sta_id}", {
                                    "data": waveforms,
                                    "phase_time": phase_time,
                                    "phase_index": phase_index,
                                    "phase_type": phase_type,
                                    "phase_polarity": phase_polarity,
                                    "begin_time": begin_time,
                                    "end_time": end_time,
                                    "event_time": event_time,
                                    "event_time_index": event_time_index,
                                    "event_location": event_location,
                                    "station_location": station_location,
                                }

                        elif (
                            (self.config.name == "event")
                            or (self.config.name == "event_train")
                            or (self.config.name == "event_test")
                        ):

                            waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
                            phase_type = []
                            phase_time = []
                            phase_index = []
                            phase_polarity = []
                            station_location = []

                            for i, sta_id in enumerate(station_ids):
                                waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt]
                                attrs = event[sta_id].attrs
                                phase_type.append(list(attrs["phase_type"]))
                                phase_time.append(list(attrs["phase_time"]))
                                phase_index.append(list(attrs["phase_index"]))
                                phase_polarity.append(list(attrs["phase_polarity"]))
                                station_location.append(
                                    [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
                                )
                            yield event_id, {
                                "data": waveforms,
                                "phase_time": phase_time,
                                "phase_index": phase_index,
                                "phase_type": phase_type,
                                "phase_polarity": phase_polarity,
                                "begin_time": begin_time,
                                "end_time": end_time,
                                "event_time": event_time,
                                "event_time_index": event_time_index,
                                "event_location": event_location,
                                "station_location": station_location,
                            }