Datasets:
ArXiv:
DOI:
License:
fix small bugs
Browse files- quakeflow_nc.py +50 -44
quakeflow_nc.py
CHANGED
@@ -21,6 +21,7 @@ import h5py
|
|
21 |
import numpy as np
|
22 |
import torch
|
23 |
from typing import Dict, List, Optional, Tuple, Union
|
|
|
24 |
|
25 |
import datasets
|
26 |
|
@@ -52,6 +53,7 @@ _LICENSE = ""
|
|
52 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
53 |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
|
54 |
_FILENAMES = ["NC1970-1989.h5", "NC1990-1994.h5", "NC1995-1999.h5", "NC2000-2004.h5", "NC2005-2009.h5", "NC2010.h5", "NC2011.h5", "NC2012.h5", "NC2013.h5", "NC2014.h5", "NC2015.h5", "NC2016.h5", "NC2017.h5", "NC2018.h5", "NC2019.h5", "NC2020.h5"]
|
|
|
55 |
_URLS = {
|
56 |
"station": [f"{_REPO}/{x}" for x in _FILENAMES],
|
57 |
"event": [f"{_REPO}/{x}" for x in _FILENAMES],
|
@@ -107,8 +109,8 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
107 |
if self.config.name=="station":
|
108 |
features=datasets.Features(
|
109 |
{
|
110 |
-
"waveform": datasets.
|
111 |
-
"phase_pick": datasets.
|
112 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
113 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
114 |
})
|
@@ -186,54 +188,58 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
186 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
187 |
|
188 |
for file in filepath:
|
189 |
-
with
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
"waveform": torch.from_numpy(waveforms).float(),
|
210 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
211 |
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
212 |
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
213 |
}
|
214 |
|
215 |
-
elif self.config.name=="event":
|
216 |
-
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
217 |
-
phase_pick = np.zeros_like(waveforms)
|
218 |
-
attrs = event.attrs
|
219 |
-
event_location = [attrs["longitude"], attrs["latitude"], attrs["depth_km"], attrs["event_time_index"]]
|
220 |
-
station_location = []
|
221 |
-
|
222 |
-
for i, sta_id in enumerate(station_ids):
|
223 |
-
waveforms[i, :, :self.nt] = event[sta_id][:,:self.nt]
|
224 |
-
attrs = event[sta_id].attrs
|
225 |
-
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
226 |
-
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
227 |
-
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt)
|
228 |
-
station_location.append([attrs["longitude"], attrs["latitude"], -attrs["elevation_m"]/1e3])
|
229 |
-
|
230 |
-
yield event_id, {
|
231 |
-
"waveform": torch.from_numpy(waveforms).float(),
|
232 |
-
"phase_pick": torch.from_numpy(phase_pick).float(),
|
233 |
-
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
234 |
-
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
235 |
-
}
|
236 |
-
|
237 |
|
238 |
def generate_label(phase_list, label_width=[150, 150], nt=8192):
|
239 |
|
|
|
21 |
import numpy as np
|
22 |
import torch
|
23 |
from typing import Dict, List, Optional, Tuple, Union
|
24 |
+
import fsspec
|
25 |
|
26 |
import datasets
|
27 |
|
|
|
53 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
54 |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
|
55 |
_FILENAMES = ["NC1970-1989.h5", "NC1990-1994.h5", "NC1995-1999.h5", "NC2000-2004.h5", "NC2005-2009.h5", "NC2010.h5", "NC2011.h5", "NC2012.h5", "NC2013.h5", "NC2014.h5", "NC2015.h5", "NC2016.h5", "NC2017.h5", "NC2018.h5", "NC2019.h5", "NC2020.h5"]
|
56 |
+
# _FILENAMES = ["NC2020.h5"]
|
57 |
_URLS = {
|
58 |
"station": [f"{_REPO}/{x}" for x in _FILENAMES],
|
59 |
"event": [f"{_REPO}/{x}" for x in _FILENAMES],
|
|
|
109 |
if self.config.name=="station":
|
110 |
features=datasets.Features(
|
111 |
{
|
112 |
+
"waveform": datasets.Array2D(shape=(3, self.nt), dtype='float32'),
|
113 |
+
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype='float32'),
|
114 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
115 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
116 |
})
|
|
|
188 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
189 |
|
190 |
for file in filepath:
|
191 |
+
with fsspec.open(file, "rb") as fs:
|
192 |
+
with h5py.File(fs, "r") as fp:
|
193 |
+
# for event_id in sorted(list(fp.keys())):
|
194 |
+
event_ids = list(fp.keys())
|
195 |
+
for event_id in event_ids:
|
196 |
+
event = fp[event_id]
|
197 |
+
station_ids = list(event.keys())
|
198 |
+
if self.config.name=="station":
|
199 |
+
waveforms = np.zeros([3, self.nt], dtype="float32")
|
200 |
+
phase_pick = np.zeros_like(waveforms)
|
201 |
+
attrs = event.attrs
|
202 |
+
event_location = [attrs["longitude"], attrs["latitude"], attrs["depth_km"], attrs["event_time_index"]]
|
203 |
+
|
204 |
+
for i, sta_id in enumerate(station_ids):
|
205 |
+
# waveforms[:, :self.nt] = event[sta_id][:,:self.nt]
|
206 |
+
waveforms[:, :self.nt] = event[sta_id][:self.nt,:].T
|
207 |
+
attrs = event[sta_id].attrs
|
208 |
+
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
209 |
+
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
210 |
+
# phase_pick[:, :self.nt] = generate_label([p_picks, s_picks], nt=self.nt)
|
211 |
+
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"]/1e3]
|
212 |
+
|
213 |
+
yield f"{event_id}/{sta_id}", {
|
214 |
+
"waveform": torch.from_numpy(waveforms).float(),
|
215 |
+
"phase_pick": torch.from_numpy(phase_pick).float(),
|
216 |
+
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
217 |
+
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
218 |
+
}
|
219 |
+
|
220 |
+
elif self.config.name=="event":
|
221 |
+
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
222 |
+
phase_pick = np.zeros_like(waveforms)
|
223 |
+
attrs = event.attrs
|
224 |
+
event_location = [attrs["longitude"], attrs["latitude"], attrs["depth_km"], attrs["event_time_index"]]
|
225 |
+
station_location = []
|
226 |
+
|
227 |
+
for i, sta_id in enumerate(station_ids):
|
228 |
+
# waveforms[i, :, :self.nt] = event[sta_id][:,:self.nt]
|
229 |
+
waveforms[i, :, :self.nt] = event[sta_id][:self.nt,:].T
|
230 |
+
attrs = event[sta_id].attrs
|
231 |
+
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
232 |
+
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
233 |
+
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt)
|
234 |
+
station_location.append([attrs["longitude"], attrs["latitude"], -attrs["elevation_m"]/1e3])
|
235 |
+
|
236 |
+
yield event_id, {
|
237 |
"waveform": torch.from_numpy(waveforms).float(),
|
238 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
239 |
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
240 |
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
241 |
}
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
def generate_label(phase_list, label_width=[150, 150], nt=8192):
|
245 |
|