add data
Browse files- quakeflow_nc.py +65 -37
quakeflow_nc.py
CHANGED
@@ -52,13 +52,31 @@ _LICENSE = ""
|
|
52 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
53 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
54 |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
|
55 |
-
_FILENAMES = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# _FILENAMES = ["NC2020.h5"]
|
57 |
_URLS = {
|
58 |
"station": [f"{_REPO}/{x}" for x in _FILENAMES],
|
59 |
"event": [f"{_REPO}/{x}" for x in _FILENAMES],
|
60 |
}
|
61 |
|
|
|
62 |
class BatchBuilderConfig(datasets.BuilderConfig):
|
63 |
"""
|
64 |
yield a batch of event-based sample, so the number of sample stations can vary among batches
|
@@ -66,6 +84,7 @@ class BatchBuilderConfig(datasets.BuilderConfig):
|
|
66 |
:param batch_size: number of samples in a batch
|
67 |
:param num_stations_list: possible number of stations in a batch
|
68 |
"""
|
|
|
69 |
def __init__(self, batch_size: int, num_stations_list: List, **kwargs):
|
70 |
super().__init__(**kwargs)
|
71 |
self.batch_size = batch_size
|
@@ -75,15 +94,15 @@ class BatchBuilderConfig(datasets.BuilderConfig):
|
|
75 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
76 |
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
77 |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
78 |
-
|
79 |
VERSION = datasets.Version("1.1.0")
|
80 |
|
81 |
degree2km = 111.32
|
82 |
nt = 8192
|
83 |
feature_nt = 512
|
84 |
feature_scale = int(nt / feature_nt)
|
85 |
-
sampling_rate=100.0
|
86 |
-
|
87 |
# This is an example of a dataset with multiple configurations.
|
88 |
# If you don't want/need to define several sub-sets in your dataset,
|
89 |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
@@ -95,36 +114,39 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
95 |
# You will be able to load one or the other configurations in the following list with
|
96 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
97 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
98 |
-
|
99 |
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
|
100 |
BUILDER_CONFIGS = [
|
101 |
datasets.BuilderConfig(name="station", version=VERSION, description="yield station-based samples one by one"),
|
102 |
datasets.BuilderConfig(name="event", version=VERSION, description="yield event-based samples one by one"),
|
103 |
]
|
104 |
|
105 |
-
DEFAULT_CONFIG_NAME =
|
|
|
|
|
106 |
|
107 |
def _info(self):
|
108 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
109 |
-
if self.config.name=="station":
|
110 |
-
features=datasets.Features(
|
111 |
{
|
112 |
-
"waveform": datasets.Array2D(shape=(3, self.nt), dtype=
|
113 |
-
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype=
|
114 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
115 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
116 |
-
}
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
120 |
{
|
121 |
-
"waveform": datasets.Array3D(shape=(None, 3, self.nt), dtype=
|
122 |
-
"phase_pick": datasets.Array3D(shape=(None, 3, self.nt), dtype=
|
123 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
124 |
"station_location": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
125 |
}
|
126 |
)
|
127 |
-
|
128 |
return datasets.DatasetInfo(
|
129 |
# This is the description that will appear on the datasets page.
|
130 |
description=_DESCRIPTION,
|
@@ -173,14 +195,9 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
173 |
datasets.SplitGenerator(
|
174 |
name=datasets.Split.TEST,
|
175 |
# These kwargs will be passed to _generate_examples
|
176 |
-
gen_kwargs={
|
177 |
-
"filepath": files[-1:],
|
178 |
-
"split": "test"
|
179 |
-
},
|
180 |
),
|
181 |
]
|
182 |
-
|
183 |
-
|
184 |
|
185 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
186 |
def _generate_examples(self, filepath, split):
|
@@ -195,20 +212,25 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
195 |
for event_id in event_ids:
|
196 |
event = fp[event_id]
|
197 |
station_ids = list(event.keys())
|
198 |
-
if self.config.name=="station":
|
199 |
waveforms = np.zeros([3, self.nt], dtype="float32")
|
200 |
phase_pick = np.zeros_like(waveforms)
|
201 |
attrs = event.attrs
|
202 |
-
event_location = [
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
for i, sta_id in enumerate(station_ids):
|
205 |
-
|
206 |
-
waveforms[:, :self.nt] = event[sta_id][:self.nt
|
207 |
attrs = event[sta_id].attrs
|
208 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
209 |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
210 |
# phase_pick[:, :self.nt] = generate_label([p_picks, s_picks], nt=self.nt)
|
211 |
-
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"]/1e3]
|
212 |
|
213 |
yield f"{event_id}/{sta_id}", {
|
214 |
"waveform": torch.from_numpy(waveforms).float(),
|
@@ -217,22 +239,29 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
217 |
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
218 |
}
|
219 |
|
220 |
-
elif self.config.name=="event":
|
221 |
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
222 |
phase_pick = np.zeros_like(waveforms)
|
223 |
attrs = event.attrs
|
224 |
-
event_location = [
|
|
|
|
|
|
|
|
|
|
|
225 |
station_location = []
|
226 |
-
|
227 |
for i, sta_id in enumerate(station_ids):
|
228 |
-
|
229 |
-
waveforms[i, :, :self.nt] = event[sta_id][:self.nt
|
230 |
attrs = event[sta_id].attrs
|
231 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
232 |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
233 |
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt)
|
234 |
-
station_location.append(
|
235 |
-
|
|
|
|
|
236 |
yield event_id, {
|
237 |
"waveform": torch.from_numpy(waveforms).float(),
|
238 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
@@ -242,7 +271,6 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
242 |
|
243 |
|
244 |
def generate_label(phase_list, label_width=[150, 150], nt=8192):
|
245 |
-
|
246 |
target = np.zeros([len(phase_list) + 1, nt], dtype=np.float32)
|
247 |
|
248 |
for i, (picks, w) in enumerate(zip(phase_list, label_width)):
|
@@ -254,4 +282,4 @@ def generate_label(phase_list, label_width=[150, 150], nt=8192):
|
|
254 |
|
255 |
target[0:1, :] = np.maximum(0, 1 - np.sum(target[1:, :], axis=0, keepdims=True))
|
256 |
|
257 |
-
return target
|
|
|
52 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
53 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
54 |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
|
55 |
+
_FILENAMES = [
|
56 |
+
"NC1970-1989.h5",
|
57 |
+
"NC1990-1994.h5",
|
58 |
+
"NC1995-1999.h5",
|
59 |
+
"NC2000-2004.h5",
|
60 |
+
"NC2005-2009.h5",
|
61 |
+
"NC2010.h5",
|
62 |
+
"NC2011.h5",
|
63 |
+
"NC2012.h5",
|
64 |
+
"NC2013.h5",
|
65 |
+
"NC2014.h5",
|
66 |
+
"NC2015.h5",
|
67 |
+
"NC2016.h5",
|
68 |
+
"NC2017.h5",
|
69 |
+
"NC2018.h5",
|
70 |
+
"NC2019.h5",
|
71 |
+
"NC2020.h5",
|
72 |
+
]
|
73 |
# _FILENAMES = ["NC2020.h5"]
|
74 |
_URLS = {
|
75 |
"station": [f"{_REPO}/{x}" for x in _FILENAMES],
|
76 |
"event": [f"{_REPO}/{x}" for x in _FILENAMES],
|
77 |
}
|
78 |
|
79 |
+
|
80 |
class BatchBuilderConfig(datasets.BuilderConfig):
|
81 |
"""
|
82 |
yield a batch of event-based sample, so the number of sample stations can vary among batches
|
|
|
84 |
:param batch_size: number of samples in a batch
|
85 |
:param num_stations_list: possible number of stations in a batch
|
86 |
"""
|
87 |
+
|
88 |
def __init__(self, batch_size: int, num_stations_list: List, **kwargs):
|
89 |
super().__init__(**kwargs)
|
90 |
self.batch_size = batch_size
|
|
|
94 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
95 |
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
96 |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
97 |
+
|
98 |
VERSION = datasets.Version("1.1.0")
|
99 |
|
100 |
degree2km = 111.32
|
101 |
nt = 8192
|
102 |
feature_nt = 512
|
103 |
feature_scale = int(nt / feature_nt)
|
104 |
+
sampling_rate = 100.0
|
105 |
+
|
106 |
# This is an example of a dataset with multiple configurations.
|
107 |
# If you don't want/need to define several sub-sets in your dataset,
|
108 |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
|
|
114 |
# You will be able to load one or the other configurations in the following list with
|
115 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
116 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
117 |
+
|
118 |
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
|
119 |
BUILDER_CONFIGS = [
|
120 |
datasets.BuilderConfig(name="station", version=VERSION, description="yield station-based samples one by one"),
|
121 |
datasets.BuilderConfig(name="event", version=VERSION, description="yield event-based samples one by one"),
|
122 |
]
|
123 |
|
124 |
+
DEFAULT_CONFIG_NAME = (
|
125 |
+
"station" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
126 |
+
)
|
127 |
|
128 |
def _info(self):
|
129 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
130 |
+
if self.config.name == "station":
|
131 |
+
features = datasets.Features(
|
132 |
{
|
133 |
+
"waveform": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
134 |
+
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
135 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
136 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
137 |
+
}
|
138 |
+
)
|
139 |
+
|
140 |
+
elif self.config.name == "event":
|
141 |
+
features = datasets.Features(
|
142 |
{
|
143 |
+
"waveform": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
|
144 |
+
"phase_pick": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
|
145 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
146 |
"station_location": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
147 |
}
|
148 |
)
|
149 |
+
|
150 |
return datasets.DatasetInfo(
|
151 |
# This is the description that will appear on the datasets page.
|
152 |
description=_DESCRIPTION,
|
|
|
195 |
datasets.SplitGenerator(
|
196 |
name=datasets.Split.TEST,
|
197 |
# These kwargs will be passed to _generate_examples
|
198 |
+
gen_kwargs={"filepath": files[-1:], "split": "test"},
|
|
|
|
|
|
|
199 |
),
|
200 |
]
|
|
|
|
|
201 |
|
202 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
203 |
def _generate_examples(self, filepath, split):
|
|
|
212 |
for event_id in event_ids:
|
213 |
event = fp[event_id]
|
214 |
station_ids = list(event.keys())
|
215 |
+
if self.config.name == "station":
|
216 |
waveforms = np.zeros([3, self.nt], dtype="float32")
|
217 |
phase_pick = np.zeros_like(waveforms)
|
218 |
attrs = event.attrs
|
219 |
+
event_location = [
|
220 |
+
attrs["longitude"],
|
221 |
+
attrs["latitude"],
|
222 |
+
attrs["depth_km"],
|
223 |
+
attrs["event_time_index"],
|
224 |
+
]
|
225 |
|
226 |
for i, sta_id in enumerate(station_ids):
|
227 |
+
waveforms[:, : self.nt] = event[sta_id][:, : self.nt]
|
228 |
+
# waveforms[:, : self.nt] = event[sta_id][: self.nt, :].T
|
229 |
attrs = event[sta_id].attrs
|
230 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
231 |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
232 |
# phase_pick[:, :self.nt] = generate_label([p_picks, s_picks], nt=self.nt)
|
233 |
+
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
234 |
|
235 |
yield f"{event_id}/{sta_id}", {
|
236 |
"waveform": torch.from_numpy(waveforms).float(),
|
|
|
239 |
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
240 |
}
|
241 |
|
242 |
+
elif self.config.name == "event":
|
243 |
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
244 |
phase_pick = np.zeros_like(waveforms)
|
245 |
attrs = event.attrs
|
246 |
+
event_location = [
|
247 |
+
attrs["longitude"],
|
248 |
+
attrs["latitude"],
|
249 |
+
attrs["depth_km"],
|
250 |
+
attrs["event_time_index"],
|
251 |
+
]
|
252 |
station_location = []
|
253 |
+
|
254 |
for i, sta_id in enumerate(station_ids):
|
255 |
+
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt]
|
256 |
+
# waveforms[i, :, : self.nt] = event[sta_id][: self.nt, :].T
|
257 |
attrs = event[sta_id].attrs
|
258 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
259 |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
260 |
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt)
|
261 |
+
station_location.append(
|
262 |
+
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
263 |
+
)
|
264 |
+
|
265 |
yield event_id, {
|
266 |
"waveform": torch.from_numpy(waveforms).float(),
|
267 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
|
|
271 |
|
272 |
|
273 |
def generate_label(phase_list, label_width=[150, 150], nt=8192):
|
|
|
274 |
target = np.zeros([len(phase_list) + 1, nt], dtype=np.float32)
|
275 |
|
276 |
for i, (picks, w) in enumerate(zip(phase_list, label_width)):
|
|
|
282 |
|
283 |
target[0:1, :] = np.maximum(0, 1 - np.sum(target[1:, :], axis=0, keepdims=True))
|
284 |
|
285 |
+
return target
|