File size: 8,579 Bytes
efc62a8
 
85da2f8
efc62a8
 
fad45ad
efc62a8
fad45ad
c5069db
efc62a8
 
 
 
 
 
 
79be4fc
efc62a8
79be4fc
 
388e25b
507a95b
 
 
 
 
 
 
5d50497
 
 
ed6ef27
 
 
 
 
 
 
 
 
 
 
388e25b
 
 
ed6ef27
 
 
 
507a95b
ed6ef27
507a95b
 
ed6ef27
 
 
 
 
 
 
 
 
 
388e25b
 
 
ed6ef27
 
 
 
554ee79
ed6ef27
554ee79
 
ed6ef27
 
 
 
 
 
 
 
 
 
388e25b
 
ed6ef27
 
 
 
6251101
ed6ef27
6251101
 
507a95b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7175c3
507a95b
e7175c3
 
ed6ef27
 
 
 
 
 
 
 
 
 
388e25b
 
ed6ef27
 
 
 
 
 
 
 
507a95b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554ee79
 
 
 
6251101
 
 
 
e7175c3
 
 
 
efc62a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dac4a7a
c5069db
 
 
efc62a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dac4a7a
efc62a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5069db
 
 
 
 
 
efc62a8
 
 
 
c5069db
 
 
 
 
 
efc62a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5069db
 
 
 
 
 
 
 
efc62a8
 
 
 
 
 
 
 
 
 
 
 
 
 
5d50497
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
---
annotations_creators:
- other
language_creators:
- machine-generated
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- extended|glue
task_categories:
- text-classification
task_ids:
- natural-language-inference
- sentiment-classification
pretty_name: Adversarial GLUE
config_names:
- adv_mnli
- adv_mnli_mismatched
- adv_qnli
- adv_qqp
- adv_rte
- adv_sst2
tags:
- paraphrase-identification
- qa-nli
dataset_info:
- config_name: adv_mnli
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  - name: idx
    dtype: int32
  splits:
  - name: validation
    num_bytes: 23712
    num_examples: 121
  download_size: 13485
  dataset_size: 23712
- config_name: adv_mnli_mismatched
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  - name: idx
    dtype: int32
  splits:
  - name: validation
    num_bytes: 40953
    num_examples: 162
  download_size: 25166
  dataset_size: 40953
- config_name: adv_qnli
  features:
  - name: question
    dtype: string
  - name: sentence
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': not_entailment
  - name: idx
    dtype: int32
  splits:
  - name: validation
    num_bytes: 34850
    num_examples: 148
  download_size: 19111
  dataset_size: 34850
- config_name: adv_qqp
  features:
  - name: question1
    dtype: string
  - name: question2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': not_duplicate
          '1': duplicate
  - name: idx
    dtype: int32
  splits:
  - name: validation
    num_bytes: 9908
    num_examples: 78
  download_size: 7705
  dataset_size: 9908
- config_name: adv_rte
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': not_entailment
  - name: idx
    dtype: int32
  splits:
  - name: validation
    num_bytes: 25998
    num_examples: 81
  download_size: 40662
  dataset_size: 25998
- config_name: adv_sst2
  features:
  - name: sentence
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative
          '1': positive
  - name: idx
    dtype: int32
  splits:
  - name: validation
    num_bytes: 16595
    num_examples: 148
  download_size: 40662
  dataset_size: 16595
configs:
- config_name: adv_mnli
  data_files:
  - split: validation
    path: adv_mnli/validation-*
- config_name: adv_mnli_mismatched
  data_files:
  - split: validation
    path: adv_mnli_mismatched/validation-*
- config_name: adv_qnli
  data_files:
  - split: validation
    path: adv_qnli/validation-*
- config_name: adv_qqp
  data_files:
  - split: validation
    path: adv_qqp/validation-*
---

# Dataset Card for Adversarial GLUE

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)


## Dataset Description

- **Homepage:**  https://adversarialglue.github.io/
- **Repository:**
- **Paper:** [arXiv](https://arxiv.org/pdf/2111.02840.pdf)
- **Leaderboard:**
- **Point of Contact:**
- **Size of downloaded dataset files:** 202.75 kB

### Dataset Summary

Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark that focuses on the adversarial robustness evaluation of language models. It covers five natural language understanding tasks from the famous GLUE tasks and is an adversarial version of GLUE benchmark.

AdvGLUE considers textual adversarial attacks from different perspectives and hierarchies, including word-level transformations, sentence-level manipulations, and human-written adversarial examples, which provide comprehensive coverage of various adversarial linguistic phenomena.

### Supported Tasks and Leaderboards

Leaderboard available on the homepage: [https://adversarialglue.github.io/](https://adversarialglue.github.io/).

### Languages

AdvGLUE deviates from the GLUE dataset, which has a base language of English.

## Dataset Structure

### Data Instances

#### default

- **Size of downloaded dataset files:** 202.75 kB
- **Example**:
```python
>>> datasets.load_dataset('adv_glue', 'adv_sst2')['validation'][0]
{'sentence': "it 's an uneven treat that bores fun at the democratic exercise while also examining its significance for those who take part .", 'label': 1, 'idx': 0}
```

### Data Fields

The data fields are the same as in the GLUE dataset, which differ by task.


The data fields are the same among all splits.

#### adv_mnli
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.

#### adv_mnli_matched
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.

#### adv_mnli_mismatched
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.

#### adv_qnli

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### adv_qqp

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### adv_rte

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### adv_sst2

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Data Splits

Adversarial GLUE provides only a 'dev' split.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The dataset is distributed under the [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/legalcode) license.

### Citation Information

```bibtex
@article{Wang2021AdversarialGA,
  title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},
  author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},
  journal={ArXiv},
  year={2021},
  volume={abs/2111.02840}
}
```

### Contributions

Thanks to [@jxmorris12](https://github.com/jxmorris12) for adding this dataset.