albertvillanova HF staff commited on
Commit
c5069db
1 Parent(s): 85da2f8

Fix documentation card of adv_glue dataset (#4838)

Browse files

Commit from https://github.com/huggingface/datasets/commit/158917e24128afbbe0f03ce36ea8cd9f850ea853

Files changed (1) hide show
  1. README.md +24 -1
README.md CHANGED
@@ -6,7 +6,7 @@ language_creators:
6
  language:
7
  - en
8
  license:
9
- - cc-by-4.0
10
  multilinguality:
11
  - monolingual
12
  pretty_name: Adversarial GLUE
@@ -65,6 +65,9 @@ configs:
65
  - **Paper:** [arXiv](https://arxiv.org/pdf/2111.02840.pdf)
66
  - **Leaderboard:**
67
  - **Point of Contact:**
 
 
 
68
  Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark that focuses on the adversarial robustness evaluation of language models. It covers five natural language understanding tasks from the famous GLUE tasks and is an adversarial version of GLUE benchmark.
69
 
70
  AdvGLUE considers textual adversarial attacks from different perspectives and hierarchies, including word-level transformations, sentence-level manipulations, and human-written adversarial examples, which provide comprehensive coverage of various adversarial linguistic phenomena.
@@ -143,10 +146,22 @@ Adversarial GLUE provides only a 'dev' split.
143
 
144
  ### Source Data
145
 
 
 
 
 
 
 
146
  [More Information Needed]
147
 
148
  ### Annotations
149
 
 
 
 
 
 
 
150
  [More Information Needed]
151
 
152
  ### Personal and Sensitive Information
@@ -169,6 +184,14 @@ Adversarial GLUE provides only a 'dev' split.
169
 
170
  ## Additional Information
171
 
 
 
 
 
 
 
 
 
172
  ### Citation Information
173
 
174
  ```bibtex
 
6
  language:
7
  - en
8
  license:
9
+ - cc-by-sa-4.0
10
  multilinguality:
11
  - monolingual
12
  pretty_name: Adversarial GLUE
 
65
  - **Paper:** [arXiv](https://arxiv.org/pdf/2111.02840.pdf)
66
  - **Leaderboard:**
67
  - **Point of Contact:**
68
+
69
+ ### Dataset Summary
70
+
71
  Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark that focuses on the adversarial robustness evaluation of language models. It covers five natural language understanding tasks from the famous GLUE tasks and is an adversarial version of GLUE benchmark.
72
 
73
  AdvGLUE considers textual adversarial attacks from different perspectives and hierarchies, including word-level transformations, sentence-level manipulations, and human-written adversarial examples, which provide comprehensive coverage of various adversarial linguistic phenomena.
 
146
 
147
  ### Source Data
148
 
149
+ #### Initial Data Collection and Normalization
150
+
151
+ [More Information Needed]
152
+
153
+ #### Who are the source language producers?
154
+
155
  [More Information Needed]
156
 
157
  ### Annotations
158
 
159
+ #### Annotation process
160
+
161
+ [More Information Needed]
162
+
163
+ #### Who are the annotators?
164
+
165
  [More Information Needed]
166
 
167
  ### Personal and Sensitive Information
 
184
 
185
  ## Additional Information
186
 
187
+ ### Dataset Curators
188
+
189
+ [More Information Needed]
190
+
191
+ ### Licensing Information
192
+
193
+ The dataset is distributed under the [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/legalcode) license.
194
+
195
  ### Citation Information
196
 
197
  ```bibtex