albertvillanova HF staff commited on
Commit
507a95b
1 Parent(s): 6b7a3b0

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -19,48 +19,17 @@ task_ids:
19
  - natural-language-inference
20
  - sentiment-classification
21
  pretty_name: Adversarial GLUE
 
 
 
 
 
 
 
22
  tags:
23
  - paraphrase-identification
24
  - qa-nli
25
  dataset_info:
26
- - config_name: adv_sst2
27
- features:
28
- - name: sentence
29
- dtype: string
30
- - name: label
31
- dtype:
32
- class_label:
33
- names:
34
- '0': negative
35
- '1': positive
36
- - name: idx
37
- dtype: int32
38
- splits:
39
- - name: validation
40
- num_bytes: 16595
41
- num_examples: 148
42
- download_size: 40662
43
- dataset_size: 16595
44
- - config_name: adv_qqp
45
- features:
46
- - name: question1
47
- dtype: string
48
- - name: question2
49
- dtype: string
50
- - name: label
51
- dtype:
52
- class_label:
53
- names:
54
- '0': not_duplicate
55
- '1': duplicate
56
- - name: idx
57
- dtype: int32
58
- splits:
59
- - name: validation
60
- num_bytes: 9926
61
- num_examples: 78
62
- download_size: 40662
63
- dataset_size: 9926
64
  - config_name: adv_mnli
65
  features:
66
  - name: premise
@@ -78,10 +47,10 @@ dataset_info:
78
  dtype: int32
79
  splits:
80
  - name: validation
81
- num_bytes: 23736
82
  num_examples: 121
83
- download_size: 40662
84
- dataset_size: 23736
85
  - config_name: adv_mnli_mismatched
86
  features:
87
  - name: premise
@@ -123,6 +92,26 @@ dataset_info:
123
  num_examples: 148
124
  download_size: 40662
125
  dataset_size: 34877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  - config_name: adv_rte
127
  features:
128
  - name: sentence1
@@ -143,13 +132,29 @@ dataset_info:
143
  num_examples: 81
144
  download_size: 40662
145
  dataset_size: 25998
146
- config_names:
147
- - adv_mnli
148
- - adv_mnli_mismatched
149
- - adv_qnli
150
- - adv_qqp
151
- - adv_rte
152
- - adv_sst2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  ---
154
 
155
  # Dataset Card for Adversarial GLUE
 
19
  - natural-language-inference
20
  - sentiment-classification
21
  pretty_name: Adversarial GLUE
22
+ config_names:
23
+ - adv_mnli
24
+ - adv_mnli_mismatched
25
+ - adv_qnli
26
+ - adv_qqp
27
+ - adv_rte
28
+ - adv_sst2
29
  tags:
30
  - paraphrase-identification
31
  - qa-nli
32
  dataset_info:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  - config_name: adv_mnli
34
  features:
35
  - name: premise
 
47
  dtype: int32
48
  splits:
49
  - name: validation
50
+ num_bytes: 23712
51
  num_examples: 121
52
+ download_size: 13485
53
+ dataset_size: 23712
54
  - config_name: adv_mnli_mismatched
55
  features:
56
  - name: premise
 
92
  num_examples: 148
93
  download_size: 40662
94
  dataset_size: 34877
95
+ - config_name: adv_qqp
96
+ features:
97
+ - name: question1
98
+ dtype: string
99
+ - name: question2
100
+ dtype: string
101
+ - name: label
102
+ dtype:
103
+ class_label:
104
+ names:
105
+ '0': not_duplicate
106
+ '1': duplicate
107
+ - name: idx
108
+ dtype: int32
109
+ splits:
110
+ - name: validation
111
+ num_bytes: 9926
112
+ num_examples: 78
113
+ download_size: 40662
114
+ dataset_size: 9926
115
  - config_name: adv_rte
116
  features:
117
  - name: sentence1
 
132
  num_examples: 81
133
  download_size: 40662
134
  dataset_size: 25998
135
+ - config_name: adv_sst2
136
+ features:
137
+ - name: sentence
138
+ dtype: string
139
+ - name: label
140
+ dtype:
141
+ class_label:
142
+ names:
143
+ '0': negative
144
+ '1': positive
145
+ - name: idx
146
+ dtype: int32
147
+ splits:
148
+ - name: validation
149
+ num_bytes: 16595
150
+ num_examples: 148
151
+ download_size: 40662
152
+ dataset_size: 16595
153
+ configs:
154
+ - config_name: adv_mnli
155
+ data_files:
156
+ - split: validation
157
+ path: adv_mnli/validation-*
158
  ---
159
 
160
  # Dataset Card for Adversarial GLUE
adv_mnli/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d669bb175d2309ace88c1b4408b203109128a021f8ae282949411a5d968d00
3
+ size 13485
dataset_infos.json CHANGED
@@ -1 +1,356 @@
1
- {"adv_sst2": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_sst2", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 16595, "num_examples": 148, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 16595, "size_in_bytes": 57257}, "adv_qqp": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"question1": {"dtype": "string", "id": null, "_type": "Value"}, "question2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_duplicate", "duplicate"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_qqp", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 9926, "num_examples": 78, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 9926, "size_in_bytes": 50588}, "adv_mnli": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_mnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 23736, "num_examples": 121, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 23736, "size_in_bytes": 64398}, "adv_mnli_mismatched": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_mnli_mismatched", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 40982, "num_examples": 162, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 40982, "size_in_bytes": 81644}, "adv_qnli": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_qnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 34877, "num_examples": 148, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 34877, "size_in_bytes": 75539}, "adv_rte": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_rte", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 25998, "num_examples": 81, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 25998, "size_in_bytes": 66660}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "adv_sst2": {
3
+ "description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n",
4
+ "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n",
5
+ "homepage": "https://adversarialglue.github.io/",
6
+ "license": "",
7
+ "features": {
8
+ "sentence": {
9
+ "dtype": "string",
10
+ "id": null,
11
+ "_type": "Value"
12
+ },
13
+ "label": {
14
+ "num_classes": 2,
15
+ "names": [
16
+ "negative",
17
+ "positive"
18
+ ],
19
+ "id": null,
20
+ "_type": "ClassLabel"
21
+ },
22
+ "idx": {
23
+ "dtype": "int32",
24
+ "id": null,
25
+ "_type": "Value"
26
+ }
27
+ },
28
+ "post_processed": null,
29
+ "supervised_keys": null,
30
+ "task_templates": null,
31
+ "builder_name": "adv_glue",
32
+ "config_name": "adv_sst2",
33
+ "version": {
34
+ "version_str": "1.0.0",
35
+ "description": "",
36
+ "major": 1,
37
+ "minor": 0,
38
+ "patch": 0
39
+ },
40
+ "splits": {
41
+ "validation": {
42
+ "name": "validation",
43
+ "num_bytes": 16595,
44
+ "num_examples": 148,
45
+ "dataset_name": "adv_glue"
46
+ }
47
+ },
48
+ "download_checksums": {
49
+ "https://adversarialglue.github.io/dataset/dev.zip": {
50
+ "num_bytes": 40662,
51
+ "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"
52
+ }
53
+ },
54
+ "download_size": 40662,
55
+ "post_processing_size": null,
56
+ "dataset_size": 16595,
57
+ "size_in_bytes": 57257
58
+ },
59
+ "adv_qqp": {
60
+ "description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n",
61
+ "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n",
62
+ "homepage": "https://adversarialglue.github.io/",
63
+ "license": "",
64
+ "features": {
65
+ "question1": {
66
+ "dtype": "string",
67
+ "id": null,
68
+ "_type": "Value"
69
+ },
70
+ "question2": {
71
+ "dtype": "string",
72
+ "id": null,
73
+ "_type": "Value"
74
+ },
75
+ "label": {
76
+ "num_classes": 2,
77
+ "names": [
78
+ "not_duplicate",
79
+ "duplicate"
80
+ ],
81
+ "id": null,
82
+ "_type": "ClassLabel"
83
+ },
84
+ "idx": {
85
+ "dtype": "int32",
86
+ "id": null,
87
+ "_type": "Value"
88
+ }
89
+ },
90
+ "post_processed": null,
91
+ "supervised_keys": null,
92
+ "task_templates": null,
93
+ "builder_name": "adv_glue",
94
+ "config_name": "adv_qqp",
95
+ "version": {
96
+ "version_str": "1.0.0",
97
+ "description": "",
98
+ "major": 1,
99
+ "minor": 0,
100
+ "patch": 0
101
+ },
102
+ "splits": {
103
+ "validation": {
104
+ "name": "validation",
105
+ "num_bytes": 9926,
106
+ "num_examples": 78,
107
+ "dataset_name": "adv_glue"
108
+ }
109
+ },
110
+ "download_checksums": {
111
+ "https://adversarialglue.github.io/dataset/dev.zip": {
112
+ "num_bytes": 40662,
113
+ "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"
114
+ }
115
+ },
116
+ "download_size": 40662,
117
+ "post_processing_size": null,
118
+ "dataset_size": 9926,
119
+ "size_in_bytes": 50588
120
+ },
121
+ "adv_mnli": {
122
+ "description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n",
123
+ "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n",
124
+ "homepage": "https://adversarialglue.github.io/",
125
+ "license": "",
126
+ "features": {
127
+ "premise": {
128
+ "dtype": "string",
129
+ "_type": "Value"
130
+ },
131
+ "hypothesis": {
132
+ "dtype": "string",
133
+ "_type": "Value"
134
+ },
135
+ "label": {
136
+ "names": [
137
+ "entailment",
138
+ "neutral",
139
+ "contradiction"
140
+ ],
141
+ "_type": "ClassLabel"
142
+ },
143
+ "idx": {
144
+ "dtype": "int32",
145
+ "_type": "Value"
146
+ }
147
+ },
148
+ "builder_name": "parquet",
149
+ "dataset_name": "adv_glue",
150
+ "config_name": "adv_mnli",
151
+ "version": {
152
+ "version_str": "1.0.0",
153
+ "major": 1,
154
+ "minor": 0,
155
+ "patch": 0
156
+ },
157
+ "splits": {
158
+ "validation": {
159
+ "name": "validation",
160
+ "num_bytes": 23712,
161
+ "num_examples": 121,
162
+ "dataset_name": null
163
+ }
164
+ },
165
+ "download_size": 13485,
166
+ "dataset_size": 23712,
167
+ "size_in_bytes": 37197
168
+ },
169
+ "adv_mnli_mismatched": {
170
+ "description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n",
171
+ "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n",
172
+ "homepage": "https://adversarialglue.github.io/",
173
+ "license": "",
174
+ "features": {
175
+ "premise": {
176
+ "dtype": "string",
177
+ "id": null,
178
+ "_type": "Value"
179
+ },
180
+ "hypothesis": {
181
+ "dtype": "string",
182
+ "id": null,
183
+ "_type": "Value"
184
+ },
185
+ "label": {
186
+ "num_classes": 3,
187
+ "names": [
188
+ "entailment",
189
+ "neutral",
190
+ "contradiction"
191
+ ],
192
+ "id": null,
193
+ "_type": "ClassLabel"
194
+ },
195
+ "idx": {
196
+ "dtype": "int32",
197
+ "id": null,
198
+ "_type": "Value"
199
+ }
200
+ },
201
+ "post_processed": null,
202
+ "supervised_keys": null,
203
+ "task_templates": null,
204
+ "builder_name": "adv_glue",
205
+ "config_name": "adv_mnli_mismatched",
206
+ "version": {
207
+ "version_str": "1.0.0",
208
+ "description": "",
209
+ "major": 1,
210
+ "minor": 0,
211
+ "patch": 0
212
+ },
213
+ "splits": {
214
+ "validation": {
215
+ "name": "validation",
216
+ "num_bytes": 40982,
217
+ "num_examples": 162,
218
+ "dataset_name": "adv_glue"
219
+ }
220
+ },
221
+ "download_checksums": {
222
+ "https://adversarialglue.github.io/dataset/dev.zip": {
223
+ "num_bytes": 40662,
224
+ "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"
225
+ }
226
+ },
227
+ "download_size": 40662,
228
+ "post_processing_size": null,
229
+ "dataset_size": 40982,
230
+ "size_in_bytes": 81644
231
+ },
232
+ "adv_qnli": {
233
+ "description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n",
234
+ "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n",
235
+ "homepage": "https://adversarialglue.github.io/",
236
+ "license": "",
237
+ "features": {
238
+ "question": {
239
+ "dtype": "string",
240
+ "id": null,
241
+ "_type": "Value"
242
+ },
243
+ "sentence": {
244
+ "dtype": "string",
245
+ "id": null,
246
+ "_type": "Value"
247
+ },
248
+ "label": {
249
+ "num_classes": 2,
250
+ "names": [
251
+ "entailment",
252
+ "not_entailment"
253
+ ],
254
+ "id": null,
255
+ "_type": "ClassLabel"
256
+ },
257
+ "idx": {
258
+ "dtype": "int32",
259
+ "id": null,
260
+ "_type": "Value"
261
+ }
262
+ },
263
+ "post_processed": null,
264
+ "supervised_keys": null,
265
+ "task_templates": null,
266
+ "builder_name": "adv_glue",
267
+ "config_name": "adv_qnli",
268
+ "version": {
269
+ "version_str": "1.0.0",
270
+ "description": "",
271
+ "major": 1,
272
+ "minor": 0,
273
+ "patch": 0
274
+ },
275
+ "splits": {
276
+ "validation": {
277
+ "name": "validation",
278
+ "num_bytes": 34877,
279
+ "num_examples": 148,
280
+ "dataset_name": "adv_glue"
281
+ }
282
+ },
283
+ "download_checksums": {
284
+ "https://adversarialglue.github.io/dataset/dev.zip": {
285
+ "num_bytes": 40662,
286
+ "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"
287
+ }
288
+ },
289
+ "download_size": 40662,
290
+ "post_processing_size": null,
291
+ "dataset_size": 34877,
292
+ "size_in_bytes": 75539
293
+ },
294
+ "adv_rte": {
295
+ "description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n",
296
+ "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n",
297
+ "homepage": "https://adversarialglue.github.io/",
298
+ "license": "",
299
+ "features": {
300
+ "sentence1": {
301
+ "dtype": "string",
302
+ "id": null,
303
+ "_type": "Value"
304
+ },
305
+ "sentence2": {
306
+ "dtype": "string",
307
+ "id": null,
308
+ "_type": "Value"
309
+ },
310
+ "label": {
311
+ "num_classes": 2,
312
+ "names": [
313
+ "entailment",
314
+ "not_entailment"
315
+ ],
316
+ "id": null,
317
+ "_type": "ClassLabel"
318
+ },
319
+ "idx": {
320
+ "dtype": "int32",
321
+ "id": null,
322
+ "_type": "Value"
323
+ }
324
+ },
325
+ "post_processed": null,
326
+ "supervised_keys": null,
327
+ "task_templates": null,
328
+ "builder_name": "adv_glue",
329
+ "config_name": "adv_rte",
330
+ "version": {
331
+ "version_str": "1.0.0",
332
+ "description": "",
333
+ "major": 1,
334
+ "minor": 0,
335
+ "patch": 0
336
+ },
337
+ "splits": {
338
+ "validation": {
339
+ "name": "validation",
340
+ "num_bytes": 25998,
341
+ "num_examples": 81,
342
+ "dataset_name": "adv_glue"
343
+ }
344
+ },
345
+ "download_checksums": {
346
+ "https://adversarialglue.github.io/dataset/dev.zip": {
347
+ "num_bytes": 40662,
348
+ "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"
349
+ }
350
+ },
351
+ "download_size": 40662,
352
+ "post_processing_size": null,
353
+ "dataset_size": 25998,
354
+ "size_in_bytes": 66660
355
+ }
356
+ }