File size: 8,669 Bytes
efc62a8 85da2f8 efc62a8 fad45ad efc62a8 fad45ad c5069db efc62a8 79be4fc efc62a8 79be4fc 388e25b 507a95b 5d50497 ed6ef27 388e25b ed6ef27 507a95b ed6ef27 507a95b ed6ef27 388e25b ed6ef27 554ee79 ed6ef27 554ee79 ed6ef27 388e25b ed6ef27 6251101 ed6ef27 6251101 507a95b e7175c3 507a95b e7175c3 ed6ef27 388e25b ed6ef27 2ee6e8f ed6ef27 2ee6e8f 507a95b 554ee79 6251101 e7175c3 2ee6e8f efc62a8 dac4a7a c5069db efc62a8 dac4a7a efc62a8 c5069db efc62a8 c5069db efc62a8 c5069db efc62a8 5d50497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
---
annotations_creators:
- other
language_creators:
- machine-generated
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- extended|glue
task_categories:
- text-classification
task_ids:
- natural-language-inference
- sentiment-classification
pretty_name: Adversarial GLUE
config_names:
- adv_mnli
- adv_mnli_mismatched
- adv_qnli
- adv_qqp
- adv_rte
- adv_sst2
tags:
- paraphrase-identification
- qa-nli
dataset_info:
- config_name: adv_mnli
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 23712
num_examples: 121
download_size: 13485
dataset_size: 23712
- config_name: adv_mnli_mismatched
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 40953
num_examples: 162
download_size: 25166
dataset_size: 40953
- config_name: adv_qnli
features:
- name: question
dtype: string
- name: sentence
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': not_entailment
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 34850
num_examples: 148
download_size: 19111
dataset_size: 34850
- config_name: adv_qqp
features:
- name: question1
dtype: string
- name: question2
dtype: string
- name: label
dtype:
class_label:
names:
'0': not_duplicate
'1': duplicate
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 9908
num_examples: 78
download_size: 7705
dataset_size: 9908
- config_name: adv_rte
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': not_entailment
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 25979
num_examples: 81
download_size: 15872
dataset_size: 25979
- config_name: adv_sst2
features:
- name: sentence
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative
'1': positive
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 16595
num_examples: 148
download_size: 40662
dataset_size: 16595
configs:
- config_name: adv_mnli
data_files:
- split: validation
path: adv_mnli/validation-*
- config_name: adv_mnli_mismatched
data_files:
- split: validation
path: adv_mnli_mismatched/validation-*
- config_name: adv_qnli
data_files:
- split: validation
path: adv_qnli/validation-*
- config_name: adv_qqp
data_files:
- split: validation
path: adv_qqp/validation-*
- config_name: adv_rte
data_files:
- split: validation
path: adv_rte/validation-*
---
# Dataset Card for Adversarial GLUE
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://adversarialglue.github.io/
- **Repository:**
- **Paper:** [arXiv](https://arxiv.org/pdf/2111.02840.pdf)
- **Leaderboard:**
- **Point of Contact:**
- **Size of downloaded dataset files:** 202.75 kB
### Dataset Summary
Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark that focuses on the adversarial robustness evaluation of language models. It covers five natural language understanding tasks from the famous GLUE tasks and is an adversarial version of GLUE benchmark.
AdvGLUE considers textual adversarial attacks from different perspectives and hierarchies, including word-level transformations, sentence-level manipulations, and human-written adversarial examples, which provide comprehensive coverage of various adversarial linguistic phenomena.
### Supported Tasks and Leaderboards
Leaderboard available on the homepage: [https://adversarialglue.github.io/](https://adversarialglue.github.io/).
### Languages
AdvGLUE deviates from the GLUE dataset, which has a base language of English.
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 202.75 kB
- **Example**:
```python
>>> datasets.load_dataset('adv_glue', 'adv_sst2')['validation'][0]
{'sentence': "it 's an uneven treat that bores fun at the democratic exercise while also examining its significance for those who take part .", 'label': 1, 'idx': 0}
```
### Data Fields
The data fields are the same as in the GLUE dataset, which differ by task.
The data fields are the same among all splits.
#### adv_mnli
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.
#### adv_mnli_matched
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.
#### adv_mnli_mismatched
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.
#### adv_qnli
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### adv_qqp
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### adv_rte
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### adv_sst2
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Data Splits
Adversarial GLUE provides only a 'dev' split.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is distributed under the [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/legalcode) license.
### Citation Information
```bibtex
@article{Wang2021AdversarialGA,
title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},
author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},
journal={ArXiv},
year={2021},
volume={abs/2111.02840}
}
```
### Contributions
Thanks to [@jxmorris12](https://github.com/jxmorris12) for adding this dataset. |