Edit model card

albert-xxlarge-v2-finetuned-csqa

This model is a fine-tuned version of albert-xxlarge-v2 on the commonsense_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6177
  • Accuracy: 0.7871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7464 1.0 609 0.5319 0.7985
0.3116 2.0 1218 0.6422 0.7936
0.0769 3.0 1827 1.2674 0.7952
0.0163 4.0 2436 1.4839 0.7903
0.0122 5.0 3045 1.6177 0.7871

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.9.0
  • Datasets 1.10.2
  • Tokenizers 0.10.3
Downloads last month
50

Dataset used to train danlou/albert-xxlarge-v2-finetuned-csqa