YAML Metadata
Warning:
The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other
Oot-v2_lll
Oot-v2_lll is a merge of the following models using Mergekit:
🧩 Configuration
slices:
- sources:
- model: mlabonne/Marcoro14-7B-slerp
layer_range: [0, 32]
- model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/Marcoro14-7B-slerp
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "damerajee/Oot-v2_lll"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.73 |
AI2 Reasoning Challenge (25-Shot) | 69.28 |
HellaSwag (10-Shot) | 86.60 |
MMLU (5-Shot) | 64.96 |
TruthfulQA (0-shot) | 62.57 |
Winogrande (5-shot) | 80.82 |
GSM8k (5-shot) | 72.18 |
- Downloads last month
- 72
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for damerajee/Oot-v2_lll
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard69.280
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard86.600
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.960
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard62.570
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.820
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard72.180