emotion_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3105
- Accuracy: 0.5188
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0819 | 1.0 | 10 | 2.0549 | 0.2375 |
2.0249 | 2.0 | 20 | 1.9696 | 0.3625 |
1.8988 | 3.0 | 30 | 1.8123 | 0.3937 |
1.7331 | 4.0 | 40 | 1.6707 | 0.4375 |
1.5894 | 5.0 | 50 | 1.5504 | 0.4938 |
1.4997 | 6.0 | 60 | 1.4963 | 0.5188 |
1.424 | 7.0 | 70 | 1.4749 | 0.4688 |
1.3576 | 8.0 | 80 | 1.4223 | 0.5125 |
1.2986 | 9.0 | 90 | 1.3850 | 0.5312 |
1.2358 | 10.0 | 100 | 1.3588 | 0.5375 |
1.2052 | 11.0 | 110 | 1.3226 | 0.55 |
1.1699 | 12.0 | 120 | 1.3446 | 0.525 |
1.1334 | 13.0 | 130 | 1.3223 | 0.525 |
1.1178 | 14.0 | 140 | 1.3089 | 0.575 |
1.1062 | 15.0 | 150 | 1.2776 | 0.5625 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Tokenizers 0.20.3
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for damelia/emotion_classification
Base model
google/vit-base-patch16-224-in21k