Edit model card

distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3872
  • Accuracy: 0.6802
  • F1: 0.6793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 48 1.7238 0.6762 0.6813
0.0305 2.0 96 1.8028 0.6775 0.6755
0.0305 3.0 144 1.9018 0.6689 0.6668
0.0257 4.0 192 1.9426 0.6735 0.6740
0.0257 5.0 240 1.9829 0.6662 0.6670
0.0207 6.0 288 1.9462 0.6722 0.6753
0.0207 7.0 336 1.9573 0.6861 0.6851
0.0185 8.0 384 2.0147 0.6808 0.6820
0.0185 9.0 432 2.0982 0.6669 0.6649
0.0172 10.0 480 2.0431 0.6815 0.6799
0.0172 11.0 528 2.0935 0.6768 0.6751
0.0182 12.0 576 2.0599 0.6868 0.6835
0.0182 13.0 624 2.0953 0.6808 0.6812
0.0148 14.0 672 2.1115 0.6788 0.6790
0.0148 15.0 720 2.1529 0.6735 0.6765
0.0171 16.0 768 2.1873 0.6702 0.6720
0.0171 17.0 816 2.1534 0.6782 0.6793
0.0142 18.0 864 2.1803 0.6782 0.6773
0.0142 19.0 912 2.2252 0.6802 0.6801
0.0168 20.0 960 2.2221 0.6749 0.6764
0.0168 21.0 1008 2.2365 0.6821 0.6817
0.015 22.0 1056 2.2812 0.6742 0.6728
0.015 23.0 1104 2.2447 0.6729 0.6707
0.0145 24.0 1152 2.3272 0.6709 0.6700
0.0145 25.0 1200 2.2630 0.6788 0.6809
0.0151 26.0 1248 2.2751 0.6808 0.6811
0.0151 27.0 1296 2.3018 0.6768 0.6776
0.0144 28.0 1344 2.3544 0.6676 0.6681
0.0144 29.0 1392 2.3109 0.6821 0.6828
0.0126 30.0 1440 2.3234 0.6795 0.6786
0.0126 31.0 1488 2.3294 0.6755 0.6750
0.0142 32.0 1536 2.3183 0.6875 0.6886
0.0142 33.0 1584 2.2949 0.6808 0.6823
0.0131 34.0 1632 2.3451 0.6788 0.6773
0.0131 35.0 1680 2.3160 0.6828 0.6841
0.0143 36.0 1728 2.3251 0.6828 0.6815
0.0143 37.0 1776 2.4003 0.6762 0.6753
0.0116 38.0 1824 2.3675 0.6775 0.6770
0.0116 39.0 1872 2.3700 0.6749 0.6735
0.0126 40.0 1920 2.3700 0.6841 0.6831
0.0126 41.0 1968 2.3818 0.6795 0.6793
0.0115 42.0 2016 2.3518 0.6815 0.6814
0.0115 43.0 2064 2.3829 0.6802 0.6790
0.0135 44.0 2112 2.3638 0.6782 0.6775
0.0135 45.0 2160 2.3568 0.6775 0.6768
0.0146 46.0 2208 2.3633 0.6788 0.6784
0.0118 47.0 2256 2.3725 0.6788 0.6782
0.0118 48.0 2304 2.3875 0.6815 0.6806
0.0116 49.0 2352 2.3862 0.6795 0.6787
0.0116 50.0 2400 2.3872 0.6802 0.6793

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dalopeza98/distilbert-base-uncased-finetuned-emotion

Finetuned
(6400)
this model