MLMA_lab9_task2 / README.md
daijin219's picture
update model card README.md
905938e
|
raw
history blame
3.33 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - ncbi_disease
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: MLMA_lab9_task2
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ncbi_disease
          type: ncbi_disease
          config: ncbi_disease
          split: validation
          args: ncbi_disease
        metrics:
          - name: Precision
            type: precision
            value: 0.015873015873015872
          - name: Recall
            type: recall
            value: 0.14866581956797967
          - name: F1
            type: f1
            value: 0.028683500858053445
          - name: Accuracy
            type: accuracy
            value: 0.6365342039100904

MLMA_lab9_task2

This model is a fine-tuned version of microsoft/biogpt on the ncbi_disease dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2509
  • Precision: 0.0159
  • Recall: 0.1487
  • F1: 0.0287
  • Accuracy: 0.6365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.153 1.0 680 1.0671 0.0122 0.1258 0.0223 0.5452
1.02 2.0 1360 1.0418 0.0098 0.0203 0.0132 0.6791
0.9552 3.0 2040 1.0269 0.0135 0.1677 0.0250 0.5282
0.926 4.0 2720 1.0390 0.0143 0.0940 0.0248 0.6686
0.9156 5.0 3400 1.0200 0.0135 0.2046 0.0253 0.4679
0.8791 6.0 4080 1.0543 0.0131 0.2745 0.0250 0.3149
0.8672 7.0 4760 1.0545 0.0141 0.2732 0.0267 0.3471
0.8627 8.0 5440 1.0734 0.0145 0.0826 0.0246 0.7220
0.8375 9.0 6120 1.1068 0.0156 0.1410 0.0281 0.6451
0.8235 10.0 6800 1.0796 0.0158 0.1537 0.0286 0.6210
0.8157 11.0 7480 1.1476 0.0143 0.1690 0.0263 0.5737
0.7957 12.0 8160 1.1369 0.0143 0.1525 0.0262 0.6155
0.7937 13.0 8840 1.2014 0.0151 0.1741 0.0278 0.5808
0.7765 14.0 9520 1.2249 0.0160 0.1449 0.0289 0.6443
0.7661 15.0 10200 1.2509 0.0159 0.1487 0.0287 0.6365

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3