update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 1.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -66,28 +66,33 @@ More information needed
|
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
-
- learning_rate:
|
70 |
- train_batch_size: 8
|
71 |
- eval_batch_size: 8
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
-
| Training Loss | Epoch | Step
|
80 |
-
|
81 |
-
|
|
82 |
-
|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.015873015873015872
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.14866581956797967
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.028683500858053445
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.6365342039100904
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 1.2509
|
47 |
+
- Precision: 0.0159
|
48 |
+
- Recall: 0.1487
|
49 |
+
- F1: 0.0287
|
50 |
+
- Accuracy: 0.6365
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 5e-05
|
70 |
- train_batch_size: 8
|
71 |
- eval_batch_size: 8
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 15
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 1.153 | 1.0 | 680 | 1.0671 | 0.0122 | 0.1258 | 0.0223 | 0.5452 |
|
82 |
+
| 1.02 | 2.0 | 1360 | 1.0418 | 0.0098 | 0.0203 | 0.0132 | 0.6791 |
|
83 |
+
| 0.9552 | 3.0 | 2040 | 1.0269 | 0.0135 | 0.1677 | 0.0250 | 0.5282 |
|
84 |
+
| 0.926 | 4.0 | 2720 | 1.0390 | 0.0143 | 0.0940 | 0.0248 | 0.6686 |
|
85 |
+
| 0.9156 | 5.0 | 3400 | 1.0200 | 0.0135 | 0.2046 | 0.0253 | 0.4679 |
|
86 |
+
| 0.8791 | 6.0 | 4080 | 1.0543 | 0.0131 | 0.2745 | 0.0250 | 0.3149 |
|
87 |
+
| 0.8672 | 7.0 | 4760 | 1.0545 | 0.0141 | 0.2732 | 0.0267 | 0.3471 |
|
88 |
+
| 0.8627 | 8.0 | 5440 | 1.0734 | 0.0145 | 0.0826 | 0.0246 | 0.7220 |
|
89 |
+
| 0.8375 | 9.0 | 6120 | 1.1068 | 0.0156 | 0.1410 | 0.0281 | 0.6451 |
|
90 |
+
| 0.8235 | 10.0 | 6800 | 1.0796 | 0.0158 | 0.1537 | 0.0286 | 0.6210 |
|
91 |
+
| 0.8157 | 11.0 | 7480 | 1.1476 | 0.0143 | 0.1690 | 0.0263 | 0.5737 |
|
92 |
+
| 0.7957 | 12.0 | 8160 | 1.1369 | 0.0143 | 0.1525 | 0.0262 | 0.6155 |
|
93 |
+
| 0.7937 | 13.0 | 8840 | 1.2014 | 0.0151 | 0.1741 | 0.0278 | 0.5808 |
|
94 |
+
| 0.7765 | 14.0 | 9520 | 1.2249 | 0.0160 | 0.1449 | 0.0289 | 0.6443 |
|
95 |
+
| 0.7661 | 15.0 | 10200 | 1.2509 | 0.0159 | 0.1487 | 0.0287 | 0.6365 |
|
96 |
|
97 |
|
98 |
### Framework versions
|