|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ncbi_disease |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: MLMA_lab9_task2 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: ncbi_disease |
|
type: ncbi_disease |
|
config: ncbi_disease |
|
split: validation |
|
args: ncbi_disease |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.015873015873015872 |
|
- name: Recall |
|
type: recall |
|
value: 0.14866581956797967 |
|
- name: F1 |
|
type: f1 |
|
value: 0.028683500858053445 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6365342039100904 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MLMA_lab9_task2 |
|
|
|
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2509 |
|
- Precision: 0.0159 |
|
- Recall: 0.1487 |
|
- F1: 0.0287 |
|
- Accuracy: 0.6365 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.153 | 1.0 | 680 | 1.0671 | 0.0122 | 0.1258 | 0.0223 | 0.5452 | |
|
| 1.02 | 2.0 | 1360 | 1.0418 | 0.0098 | 0.0203 | 0.0132 | 0.6791 | |
|
| 0.9552 | 3.0 | 2040 | 1.0269 | 0.0135 | 0.1677 | 0.0250 | 0.5282 | |
|
| 0.926 | 4.0 | 2720 | 1.0390 | 0.0143 | 0.0940 | 0.0248 | 0.6686 | |
|
| 0.9156 | 5.0 | 3400 | 1.0200 | 0.0135 | 0.2046 | 0.0253 | 0.4679 | |
|
| 0.8791 | 6.0 | 4080 | 1.0543 | 0.0131 | 0.2745 | 0.0250 | 0.3149 | |
|
| 0.8672 | 7.0 | 4760 | 1.0545 | 0.0141 | 0.2732 | 0.0267 | 0.3471 | |
|
| 0.8627 | 8.0 | 5440 | 1.0734 | 0.0145 | 0.0826 | 0.0246 | 0.7220 | |
|
| 0.8375 | 9.0 | 6120 | 1.1068 | 0.0156 | 0.1410 | 0.0281 | 0.6451 | |
|
| 0.8235 | 10.0 | 6800 | 1.0796 | 0.0158 | 0.1537 | 0.0286 | 0.6210 | |
|
| 0.8157 | 11.0 | 7480 | 1.1476 | 0.0143 | 0.1690 | 0.0263 | 0.5737 | |
|
| 0.7957 | 12.0 | 8160 | 1.1369 | 0.0143 | 0.1525 | 0.0262 | 0.6155 | |
|
| 0.7937 | 13.0 | 8840 | 1.2014 | 0.0151 | 0.1741 | 0.0278 | 0.5808 | |
|
| 0.7765 | 14.0 | 9520 | 1.2249 | 0.0160 | 0.1449 | 0.0289 | 0.6443 | |
|
| 0.7661 | 15.0 | 10200 | 1.2509 | 0.0159 | 0.1487 | 0.0287 | 0.6365 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|