Similarity between two sentences (fine-tuning with KoELECTRA-Small-v3 model and KorSTS dataset)
Usage (Amazon SageMaker inference applicable)
It uses the interface of the SageMaker Inference Toolkit as is, so it can be easily deployed to SageMaker Endpoint.
inference_korsts.py
import json
import sys
import logging
import torch
from torch import nn
from transformers import ElectraConfig
from transformers import ElectraModel, AutoTokenizer, ElectraTokenizer, ElectraForSequenceClassification
logging.basicConfig(
level=logging.INFO,
format='[{%(filename)s:%(lineno)d} %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(filename='tmp.log'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
max_seq_length = 128
tokenizer = AutoTokenizer.from_pretrained("daekeun-ml/koelectra-small-v3-korsts")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Huggingface pre-trained model: 'monologg/koelectra-small-v3-discriminator'
def model_fn(model_path):
####
# If you have your own trained model
# Huggingface pre-trained model: 'monologg/koelectra-small-v3-discriminator'
####
#config = ElectraConfig.from_json_file(f'{model_path}/config.json')
#model = ElectraForSequenceClassification.from_pretrained(f'{model_path}/model.pth', config=config)
model = ElectraForSequenceClassification.from_pretrained('daekeun-ml/koelectra-small-v3-korsts')
model.to(device)
return model
def input_fn(input_data, content_type="application/jsonlines"):
data_str = input_data.decode("utf-8")
jsonlines = data_str.split("\n")
transformed_inputs = []
for jsonline in jsonlines:
text = json.loads(jsonline)["text"]
logger.info("input text: {}".format(text))
encode_plus_token = tokenizer.encode_plus(
text,
max_length=max_seq_length,
add_special_tokens=True,
return_token_type_ids=False,
padding="max_length",
return_attention_mask=True,
return_tensors="pt",
truncation=True,
)
transformed_inputs.append(encode_plus_token)
return transformed_inputs
def predict_fn(transformed_inputs, model):
predicted_classes = []
for data in transformed_inputs:
data = data.to(device)
output = model(**data)
prediction_dict = {}
prediction_dict['score'] = output[0].squeeze().cpu().detach().numpy().tolist()
jsonline = json.dumps(prediction_dict)
logger.info("jsonline: {}".format(jsonline))
predicted_classes.append(jsonline)
predicted_classes_jsonlines = "\n".join(predicted_classes)
return predicted_classes_jsonlines
def output_fn(outputs, accept="application/jsonlines"):
return outputs, accept
test.py
>>> from inference_korsts import model_fn, input_fn, predict_fn, output_fn
>>> with open('./samples/korsts.txt', mode='rb') as file:
>>> model_input_data = file.read()
>>> model = model_fn()
>>> transformed_inputs = input_fn(model_input_data)
>>> predicted_classes_jsonlines = predict_fn(transformed_inputs, model)
>>> model_outputs = output_fn(predicted_classes_jsonlines)
>>> print(model_outputs[0])
[{inference_korsts.py:44} INFO - input text: ['๋ง์๋ ๋ผ๋ฉด์ ๋จน๊ณ ์ถ์ด์', 'ํ๋ฃจ๋ฃฉ ์ฉ์ฉ ํ๋ฃจ๋ฃฉ ์ฉ์ฉ ๋ง์ข์ ๋ผ๋ฉด']
[{inference_korsts.py:44} INFO - input text: ['๋ฝ๋ก๋ก๋ ๋ด์น๊ตฌ', '๋จธ์ ๋ฌ๋์ ๋ฌ๋๋จธ์ ์ด ์๋๋๋ค.']
[{inference_korsts.py:71} INFO - jsonline: {"score": 4.786738872528076}
[{inference_korsts.py:71} INFO - jsonline: {"score": 0.2319069355726242}
{"score": 4.786738872528076}
{"score": 0.2319069355726242}
Sample data (samples/korsts.txt)
{"text": ["๋ง์๋ ๋ผ๋ฉด์ ๋จน๊ณ ์ถ์ด์", "ํ๋ฃจ๋ฃฉ ์ฉ์ฉ ํ๋ฃจ๋ฃฉ ์ฉ์ฉ ๋ง์ข์ ๋ผ๋ฉด"]}
{"text": ["๋ฝ๋ก๋ก๋ ๋ด์น๊ตฌ", "๋จธ์ ๋ฌ๋์ ๋ฌ๋๋จธ์ ์ด ์๋๋๋ค."]}
References
- KoELECTRA: https://github.com/monologg/KoELECTRA
- KorNLI and KorSTS Dataset: https://github.com/kakaobrain/KorNLUDatasets
- Downloads last month
- 18
Inference API (serverless) does not yet support transformers models for this pipeline type.