logic_speculative_DeepScaleR_data
This model is a fine-tuned version of agentica-org/DeepScaleR-1.5B-Preview on the logic_speculative_DeepScaleR_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.2231
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3297 | 0.1541 | 100 | 0.2195 |
0.2183 | 0.3082 | 200 | 0.2199 |
0.2286 | 0.4622 | 300 | 0.2197 |
0.2119 | 0.6163 | 400 | 0.2199 |
0.2454 | 0.7704 | 500 | 0.2196 |
0.2651 | 0.9245 | 600 | 0.2185 |
0.1332 | 1.0786 | 700 | 0.2226 |
0.2727 | 1.2327 | 800 | 0.2235 |
0.2075 | 1.3867 | 900 | 0.2236 |
0.2613 | 1.5408 | 1000 | 0.2233 |
0.0864 | 1.6949 | 1100 | 0.2232 |
0.2049 | 1.8490 | 1200 | 0.2230 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for cutelemonlili/random_0FXEXE5zwkhtZEzH
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Finetuned
agentica-org/DeepScaleR-1.5B-Preview