Introduction
How to clone this repo
sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07
cd icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07
git lfs pull
Catuion: You have to run git lfs pull
. Otherwise, you will be SAD later.
The model in this repo is trained using the commit a8150021e01d34ecbd6198fe03a57eacf47a16f2
.
You can use
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout a8150021e01d34ecbd6198fe03a57eacf47a16f2
to download icefall
.
You can find the model information by visiting https://github.com/k2-fsa/icefall/blob/a8150021e01d34ecbd6198fe03a57eacf47a16f2/egs/librispeech/ASR/transducer_stateless/train.py#L198.
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2.
The decoder architecture is modified from Rnn-Transducer with Stateless Prediction Network. A Conv1d layer is placed right after the input embedding layer.
Description
This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset using icefall. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d.
The commands for training are:
cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 76 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp-full \
--full-libri 1 \
--max-duration 300 \
--lr-factor 5 \
--bpe-model data/lang_bpe_500/bpe.model \
--modified-transducer-prob 0.25
The tensorboard training log can be found at https://tensorboard.dev/experiment/qgvWkbF2R46FYA6ZMNmOjA/
The command for decoding is:
epoch=63
avg=19
## greedy search
for sym in 1 2 3; do
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--max-sym-per-frame $sym
done
## modified beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
You can find the decoding log for the above command in this
repo (in the folder log
).
The WERs for the test datasets are
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
greedy search (max sym per frame 2) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
greedy search (max sym per frame 3) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
modified beam search (beam size 4) | 2.67 | 6.57 | --epoch 63, --avg 19, --max-duration 100 |
File description
- log, this directory contains the decoding log and decoding results
- test_wavs, this directory contains wave files for testing the pre-trained model
- data, this directory contains files generated by prepare.sh
- exp, this directory contains only one file:
preprained.pt
exp/pretrained.pt
is generated by the following command:
./transducer_stateless/export.py \
--epoch 63 \
--avg 19 \
--bpe-model data/lang_bpe_500/bpe.model \
--exp-dir transducer_stateless/exp-full
HINT: To use pretrained.pt
to compute the WER for test-clean and test-other,
just do the following:
cp icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/exp/pretrained.pt \
/path/to/icefall/egs/librispeech/ASR/transducer_stateless/exp/epoch-999.pt
and pass --epoch 999 --avg 1
to transducer_stateless/decode.py
.