llama3-discolm-orca

is a merge of the following models

This was mostly a proof of concept test. GGUF 4k quants here: cstr/llama3-discolm-orca-GGUF

🧩 Configuration

LazyMergekit config:

models:
  - model: Locutusque/Llama-3-Orca-1.0-8B
    # no parameters necessary for base model
  - model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 0.60
      weight: 0.15
  - model: DiscoResearch/Llama3_DiscoLM_German_8b_v0.1_experimental
    parameters:
      density: 0.65
      weight: 0.7
merge_method: dare_ties
base_model: Locutusque/Llama-3-Orca-1.0-8B
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/llama3-discolm-orpo-t2"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
25
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cstr/llama3-discolm-orca