Edit model card

Model Card for mt5-base-multi-label-en-iiib-02c

This model is fine-tuned for multi-label text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents.

Model Description

The model was fine-tuned on a dataset of English Instant Messenger dialogs of Adolescents. The classification is multi-label and the model outputs any combination of the tags:'NO TAG', 'Informační podpora', 'Emocionální podpora', 'Začlenění do skupiny', 'Uznání', 'Nabídka pomoci': as a string joined with ', ' (ordered alphabetically). Each label indicates the presence of that category of Supportive Interactions: 'no tag', 'informational support', 'emocional support', 'social companionship', 'appraisal', 'instrumental support'. The inputs of the model are: a target utterance and its bi-directional context; the label of the example is determined by the label of the target utterance.

  • Developed by: Anonymous
  • Language(s): multilingual
  • Finetuned from: mt5-base

Model Sources

Usage

Here is how to use this model to classify a context-window of a dialogue:

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch

test_texts = ['Utterance2']
test_text_pairs = ['Utterance1;Utterance2;Utterance3']

checkpoint_path = "chi2024/mt5-base-multi-label-en-iiib-02c"
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)\
    .to("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)

def verbalize_input(text: str, text_pair: str) -> str:
    return "Utterance: %s\nContext: %s" % (text, text_pair)

def predict_one(text, pair):
    input_pair = verbalize_input(text, pair)
    inputs = tokenizer(input_pair, return_tensors="pt", padding=True,
                       truncation=True, max_length=256).to(model.device)
    outputs = model.generate(**inputs)
    decoded = [text.split(",")[0].strip() for text in
               tokenizer.batch_decode(outputs, skip_special_tokens=True)]
    return decoded

dec = predict_one(test_texts[0], test_text_pairs[0])
print(dec)
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.