xls-r-1b-bem-genbed-m-model

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the GENBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5624
  • Wer: 0.7514

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.2759 100 2.9022 1.0
No log 0.5517 200 1.4915 1.0022
No log 0.8276 300 0.9387 0.9416
No log 1.1034 400 0.7254 0.8661
2.1327 1.3793 500 0.8557 0.9420
2.1327 1.6552 600 0.7236 0.8662
2.1327 1.9310 700 0.6982 0.8573
2.1327 2.2069 800 0.6066 0.8003
2.1327 2.4828 900 0.6352 0.7989
0.733 2.7586 1000 0.5855 0.7902
0.733 3.0345 1100 0.5587 0.7390
0.733 3.3103 1200 0.5624 0.7514
0.733 3.5862 1300 0.5214 0.7193
0.733 3.8621 1400 0.5321 0.7208
0.5894 4.1379 1500 0.6477 0.7799
0.5894 4.4138 1600 0.6076 0.7810
0.5894 4.6897 1700 0.5821 0.7666

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
3
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/xls-r-1b-bem-genbed-m-model

Finetuned
(100)
this model