File size: 26,891 Bytes
b570d03 1ee6f60 b570d03 dde95c6 b570d03 7024b4c b570d03 7024b4c b570d03 7024b4c b570d03 7024b4c b570d03 7024b4c b570d03 7024b4c b570d03 7024b4c b570d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
import math
import os
import random
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import repeat
from torch import nn
from torch.cuda.amp import autocast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast, TokenClassifierOutput)
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
from transformers.utils import (ModelOutput, logging)
from transformers.utils.model_parallel_utils import (assert_device_map,
get_device_map)
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class StageLinear(nn.Module):
def __init__(self, in_features=768, out_features=768, bias=True, stage=0, config=None):
super().__init__()
self.stage = stage
if self.stage==0:
self.module = nn.Linear(in_features, out_features, bias)
else:
transformer_config = TransformerConfig()
transformer_config.__dict__.update(config.__dict__)
transformer_config.__dict__.update({"hidden_size": config.stage_0_hidden_size})
transformer_config.__dict__.update({"num_hidden_layers": config.stage_0_hidden_layers})
transformer_config.__dict__.update({"num_attention_heads": config.stage_0_attention_heads})
transformer_config.__dict__.update({"intermediate_size": config.stage_0_hidden_size * 4})
self.in_proj = nn.Linear(in_features, config.stage_0_hidden_size, bias=bias)
self.h = nn.ModuleList(
[TransformerBlock(transformer_config) for i in range(transformer_config.num_hidden_layers)]
)
self.ln_f = LlamaRMSNorm(config.stage_0_hidden_size, eps=config.layer_norm_epsilon)
self.out_proj = nn.Linear(config.stage_0_hidden_size, out_features, bias=bias)
def forward(self, x):
if self.stage==0:
return self.module(x)
x = self.in_proj(x)
for block in self.h:
x_new, attn_outs = block(x)
x = x + x_new
x = self.out_proj(x)
return x
class TransformerConfig(PretrainedConfig):
model_type = "Transformer"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "hidden_size",
"max_position_embeddings": "max_position_embeddings",
"num_attention_heads": "num_attention_heads",
"num_hidden_layers": "num_hidden_layers",
}
def __init__(
self,
vocab_size=32000,
max_position_embeddings=2048,
expanded_lm_head_size=8192,
hidden_size=768,
stage_0_hidden_size=256,
stage_0_hidden_layers=1,
stage_0_attention_heads=8,
kv_hidden_size=None, # in case you want to use cross-attention
num_hidden_layers=10,
num_attention_heads=12,
intermediate_size=None,
activation_function="silu",
layer_norm_epsilon=1e-6,
initializer_range=0.02,
use_cache=True,
bos_token_id=1,
eos_token_id=2,
combined_qkv=True,
use_bias=False,
rope_scaling=None,
rope_theta=10000,
tie_word_embeddings=False,
**kwargs,
):
self.stage_0_hidden_size = stage_0_hidden_size
self.stage_0_hidden_layers = stage_0_hidden_layers
self.stage_0_attention_heads = stage_0_attention_heads
self.expanded_lm_head_size = expanded_lm_head_size
self.tie_word_embeddings = tie_word_embeddings
self.rope_theta=rope_theta
self.rope_scaling=rope_scaling
self.kv_hidden_size = kv_hidden_size
self.use_bias = use_bias
self.combined_qkv = combined_qkv
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = (
intermediate_size if intermediate_size is not None else hidden_size * 4
)
self.activation_function = activation_function
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaDynamicNTKScalingRotaryEmbedding, LlamaRotaryEmbedding, LlamaLinearScalingRotaryEmbedding
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class TransformerAttention(nn.Module):
def __init__(self, config, stage):
super().__init__()
self.config = config
self.stage = stage
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.head_dim = config.hidden_size // config.num_attention_heads
assert (
self.head_dim * config.num_attention_heads == config.hidden_size
), "d_model must be divisible by n_head"
self.use_bias = config.use_bias
if not config.combined_qkv or config.kv_hidden_size is not None:
self.query = StageLinear(
config.hidden_size, config.hidden_size, bias=self.use_bias, stage=stage, config=config
)
self.key = StageLinear(
config.hidden_size
if not config.kv_hidden_size
else config.kv_hidden_size,
config.hidden_size,
bias=self.use_bias,
stage=stage, config=config
)
self.value = StageLinear(
config.hidden_size
if not config.kv_hidden_size
else config.kv_hidden_size,
config.hidden_size,
bias=self.use_bias, stage=stage, config=config
)
else:
self.qkv = StageLinear(
config.hidden_size, config.hidden_size * 3, bias=self.use_bias, stage=stage, config=config
)
self.out = StageLinear(config.hidden_size, config.hidden_size, bias=self.use_bias, stage=stage, config=config)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.config.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.config.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.config.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def forward(self, x0, x1=None, causal=False, mask=None, position_ids=None, use_cache=True, layer_past=None):
batch_size = x0.size(0)
def split_heads(x):
return x.view(
batch_size, -1, self.config.num_attention_heads, self.head_dim
).transpose(1, 2)
if not self.config.combined_qkv:
q = split_heads(self.query(x0))
k = split_heads(self.key(x1) if x1 is not None else self.key(x0))
v = split_heads(
self.value(x1 if x1 is not None else x0)
)
else:
q, k, v = self.qkv(x0).chunk(3,-1)
q = split_heads(q)
k = split_heads(k)
v = split_heads(v)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat((past_key, k), dim=-2)
v = torch.cat((past_value, v), dim=-2)
cos, sin = self.rotary_emb(v, position_ids)
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
if use_cache is True:
present = (k,v)
else:
present = None
attn_output = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=causal
)
attn_output = (
attn_output.transpose(1, 2)
.contiguous()
.view(batch_size, -1, self.config.hidden_size)
)
return self.out(attn_output), present
class MLP(nn.Module):
def __init__(self, config, stage=0):
super().__init__()
self.config = config
self.stage = stage
self.gate_proj = StageLinear(
config.hidden_size, config.intermediate_size, bias=False, stage=stage, config=config
)
self.up_proj = StageLinear(
config.hidden_size, config.intermediate_size, bias=False, stage=stage, config=config
)
self.down_proj = StageLinear(
config.intermediate_size, config.hidden_size, bias=False, stage=stage, config=config
)
self.act_fn = ACT2FN[config.activation_function]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, config, stage=0):
super().__init__()
self.config = config
self.stage = stage
self.attn = TransformerAttention(config, stage)
self.ffn = MLP(config, stage)
self.ln1 = LlamaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.ln2 = LlamaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(self, x, mask=None, position_ids=None, use_cache=True, layer_past=None):
attn_in = self.ln1(x)
ffn_in = self.ln2(x)
attn_out, attn_outs = self.attn(attn_in, causal=True, mask=mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
ffn_out = self.ffn(ffn_in)
x = x + attn_out + ffn_out
if not use_cache: attn_outs = None
return (x, attn_outs)
class TransformerPreTrainedModel(PreTrainedModel):
config_class = TransformerConfig
base_model_prefix = "transformer"
is_parallelizable = False
supports_gradient_checkpointing = True
_no_split_modules = ["TransformerBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# def _set_gradient_checkpointing(self, module, value=False):
# if isinstance(module, TransformerModel):
# module.gradient_checkpointing = value
class TransformerModel(TransformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
self.h = nn.ModuleList(
[TransformerBlock(config, stage=1) for i in range(config.num_hidden_layers)]
)
self.ln_f = LlamaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
# soooo not all of the params are able to be used, since I just copied this framework from modeling_gpt2
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
if self.config.add_cross_attention and encoder_hidden_states is not None:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
# print("inputs embeds shape", inputs_embeds.shape)
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
# output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
output_shape = (-1,) + (hidden_states.shape[1],) + (hidden_states.size(-1),)
# print(output_shape, "output shape")
if self.gradient_checkpointing and self.training:
if use_cache:
# logger.warning_once(
# "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
# )
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = (
() if output_attentions and self.config.add_cross_attention else None
)
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
if layer_past is not None:
layer_past = tuple(
past_state.to(hidden_states.device)
for past_state in layer_past
)
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(hidden_states, mask=attention_mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
hidden_states = outputs[0]
if use_cache == True:
presents = presents + (outputs[1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, None, all_hidden_states, None, None]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=None,
cross_attentions=None,
)
class TransformerModelForCausalLM(TransformerPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = []
def __init__(self, config):
super().__init__(config)
self.transformer = TransformerModel(config)
# self.lm_head = nn.Linear(
# config.hidden_size, config.vocab_size, bias=False
# )
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
self.model_parallel = False
self.device_map = None
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
)
return model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# print("Hidden states shape", hidden_states.shape)
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
)
for layer_past in past_key_values
)
|