crumb commited on
Commit
b570d03
·
verified ·
1 Parent(s): 8f7d29e

Upload model

Browse files
Files changed (4) hide show
  1. config.json +33 -0
  2. generation_config.json +6 -0
  3. model.safetensors +3 -0
  4. modeling_t2.py +656 -0
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "silu",
3
+ "architectures": [
4
+ "TransformerModelForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "modeling_t2.TransformerConfig",
8
+ "AutoModelForCausalLM": "modeling_t2.TransformerModelForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "combined_qkv": true,
12
+ "eos_token_id": 2,
13
+ "expanded_lm_head_size": 8192,
14
+ "hidden_size": 768,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "kv_hidden_size": null,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "max_position_embeddings": 2048,
20
+ "model_type": "Transformer",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 10,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000,
25
+ "stage_0_attention_heads": 6,
26
+ "stage_0_hidden_layers": 1,
27
+ "stage_0_hidden_size": 384,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.36.2",
30
+ "use_bias": false,
31
+ "use_cache": true,
32
+ "vocab_size": 32000
33
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1daa5083d32e5c14f1f024b693d30a7414cce7cf7814b9ce1dc1b0eb03dfb46b
3
+ size 385823368
modeling_t2.py ADDED
@@ -0,0 +1,656 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import warnings
5
+ from dataclasses import dataclass
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import repeat
13
+ from torch import nn
14
+ from torch.cuda.amp import autocast
15
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
16
+ from transformers.activations import ACT2FN
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPastAndCrossAttentions,
19
+ CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput,
20
+ SequenceClassifierOutputWithPast, TokenClassifierOutput)
21
+ from transformers.modeling_utils import PreTrainedModel, SequenceSummary
22
+ from transformers.utils import (ModelOutput, logging)
23
+ from transformers.utils.model_parallel_utils import (assert_device_map,
24
+ get_device_map)
25
+ from collections import OrderedDict
26
+ from typing import Any, List, Mapping, Optional
27
+
28
+ from transformers import PreTrainedTokenizer, TensorType, is_torch_available
29
+ from transformers.configuration_utils import PretrainedConfig
30
+ from transformers.utils import logging
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ class StageLinear(nn.Module):
35
+ def __init__(self, in_features=768, out_features=768, bias=True, stage=0, config=None):
36
+ super().__init__()
37
+ self.stage = stage
38
+ if self.stage==0:
39
+ self.module = nn.Linear(in_features, out_features, bias)
40
+ else:
41
+ transformer_config = TransformerConfig()
42
+ transformer_config.__dict__.update(config.__dict__)
43
+ transformer_config.__dict__.update({"hidden_size": config.stage_0_hidden_size})
44
+ transformer_config.__dict__.update({"num_hidden_layers": config.stage_0_hidden_layers})
45
+ transformer_config.__dict__.update({"num_attention_heads": config.stage_0_attention_heads})
46
+ transformer_config.__dict__.update({"intermediate_size": config.stage_0_hidden_size * 4})
47
+ self.in_proj = nn.Linear(in_features, config.stage_0_hidden_size, bias=bias)
48
+ self.h = nn.ModuleList(
49
+ [TransformerBlock(transformer_config) for i in range(transformer_config.num_hidden_layers)]
50
+ )
51
+ self.ln_f = LlamaRMSNorm(config.stage_0_hidden_size, eps=config.layer_norm_epsilon)
52
+ self.out_proj = nn.Linear(config.stage_0_hidden_size, out_features, bias=bias)
53
+ def forward(self, x):
54
+ if self.stage==0:
55
+ return self.module(x)
56
+
57
+ x = self.in_proj(x)
58
+ for block in self.h:
59
+ x_new, attn_outs = block(x)
60
+ x = x + x_new
61
+ x = self.out_proj(x)
62
+ return x
63
+
64
+ class TransformerConfig(PretrainedConfig):
65
+ model_type = "Transformer"
66
+ keys_to_ignore_at_inference = ["past_key_values"]
67
+ attribute_map = {
68
+ "hidden_size": "hidden_size",
69
+ "max_position_embeddings": "max_position_embeddings",
70
+ "num_attention_heads": "num_attention_heads",
71
+ "num_hidden_layers": "num_hidden_layers",
72
+ }
73
+
74
+ def __init__(
75
+ self,
76
+ vocab_size=32000,
77
+ max_position_embeddings=2048,
78
+ expanded_lm_head_size=8192,
79
+ hidden_size=768,
80
+ stage_0_hidden_size=256,
81
+ stage_0_hidden_layers=1,
82
+ stage_0_attention_heads=8,
83
+ kv_hidden_size=None, # in case you want to use cross-attention
84
+ num_hidden_layers=10,
85
+ num_attention_heads=12,
86
+ intermediate_size=None,
87
+ activation_function="silu",
88
+ layer_norm_epsilon=1e-6,
89
+ initializer_range=0.02,
90
+ use_cache=True,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ combined_qkv=True,
94
+ use_bias=False,
95
+ rope_scaling=None,
96
+ rope_theta=10000,
97
+ tie_word_embeddings=False,
98
+
99
+
100
+ **kwargs,
101
+ ):
102
+ self.stage_0_hidden_size = stage_0_hidden_size
103
+ self.stage_0_hidden_layers = stage_0_hidden_layers
104
+ self.stage_0_attention_heads = stage_0_attention_heads
105
+ self.expanded_lm_head_size = expanded_lm_head_size
106
+ self.tie_word_embeddings = tie_word_embeddings
107
+ self.rope_theta=rope_theta
108
+ self.rope_scaling=rope_scaling
109
+ self.kv_hidden_size = kv_hidden_size
110
+ self.use_bias = use_bias
111
+ self.combined_qkv = combined_qkv
112
+ self.vocab_size = vocab_size
113
+ self.max_position_embeddings = max_position_embeddings
114
+ self.hidden_size = hidden_size
115
+ self.num_hidden_layers = num_hidden_layers
116
+ self.num_attention_heads = num_attention_heads
117
+ self.intermediate_size = (
118
+ intermediate_size if intermediate_size is not None else hidden_size * 4
119
+ )
120
+ self.activation_function = activation_function
121
+ self.layer_norm_epsilon = layer_norm_epsilon
122
+ self.initializer_range = initializer_range
123
+
124
+ self.use_cache = use_cache
125
+
126
+ self.bos_token_id = bos_token_id
127
+ self.eos_token_id = eos_token_id
128
+
129
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
130
+
131
+
132
+ from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaDynamicNTKScalingRotaryEmbedding, LlamaRotaryEmbedding, LlamaLinearScalingRotaryEmbedding
133
+
134
+ def rotate_half(x):
135
+ """Rotates half the hidden dims of the input."""
136
+ x1 = x[..., : x.shape[-1] // 2]
137
+ x2 = x[..., x.shape[-1] // 2 :]
138
+ return torch.cat((-x2, x1), dim=-1)
139
+
140
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
141
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
142
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
143
+ q_embed = (q * cos) + (rotate_half(q) * sin)
144
+ k_embed = (k * cos) + (rotate_half(k) * sin)
145
+ return q_embed, k_embed
146
+
147
+ class TransformerAttention(nn.Module):
148
+ def __init__(self, config, stage):
149
+ super().__init__()
150
+ self.config = config
151
+ self.stage = stage
152
+ self.head_dim = config.hidden_size // config.num_attention_heads
153
+ assert (
154
+ self.head_dim * config.num_attention_heads == config.hidden_size
155
+ ), "d_model must be divisible by n_head"
156
+ self.use_bias = config.use_bias
157
+
158
+ if not config.combined_qkv or config.kv_hidden_size is not None:
159
+ self.query = StageLinear(
160
+ config.hidden_size, config.hidden_size, bias=self.use_bias, stage=stage, config=config
161
+ )
162
+ self.key = StageLinear(
163
+ config.hidden_size
164
+ if not config.kv_hidden_size
165
+ else config.kv_hidden_size,
166
+ config.hidden_size,
167
+ bias=self.use_bias,
168
+ stage=stage, config=config
169
+ )
170
+ self.value = StageLinear(
171
+ config.hidden_size
172
+ if not config.kv_hidden_size
173
+ else config.kv_hidden_size,
174
+ config.hidden_size,
175
+ bias=self.use_bias, stage=stage, config=config
176
+ )
177
+ else:
178
+ self.qkv = StageLinear(
179
+ config.hidden_size, config.hidden_size * 3, bias=self.use_bias, stage=stage, config=config
180
+ )
181
+ self.out = StageLinear(config.hidden_size, config.hidden_size, bias=self.use_bias, stage=stage, config=config)
182
+ self._init_rope()
183
+
184
+ def _init_rope(self):
185
+ if self.config.rope_scaling is None:
186
+ self.rotary_emb = LlamaRotaryEmbedding(
187
+ self.head_dim,
188
+ max_position_embeddings=self.config.max_position_embeddings,
189
+ base=self.config.rope_theta,
190
+ )
191
+ else:
192
+ scaling_type = self.config.rope_scaling["type"]
193
+ scaling_factor = self.config.rope_scaling["factor"]
194
+ if scaling_type == "linear":
195
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
196
+ self.head_dim,
197
+ max_position_embeddings=self.config.max_position_embeddings,
198
+ scaling_factor=scaling_factor,
199
+ base=self.config.rope_theta,
200
+ )
201
+ elif scaling_type == "dynamic":
202
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
203
+ self.head_dim,
204
+ max_position_embeddings=self.max_position_embeddings,
205
+ scaling_factor=scaling_factor,
206
+ base=self.config.rope_theta,
207
+ )
208
+ else:
209
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
210
+
211
+ def forward(self, x0, x1=None, causal=False, mask=None, position_ids=None, use_cache=True, layer_past=None):
212
+ batch_size = x0.size(0)
213
+
214
+ def split_heads(x):
215
+ return x.view(
216
+ batch_size, -1, self.config.num_attention_heads, self.head_dim
217
+ ).transpose(1, 2)
218
+
219
+ if not self.config.combined_qkv:
220
+ q = split_heads(self.query(x0))
221
+ k = split_heads(self.key(x1) if x1 is not None else self.key(x0))
222
+ v = split_heads(
223
+ self.value(x1 if x1 is not None else x0)
224
+ )
225
+ else:
226
+ q, k, v = self.qkv(x0).chunk(3,-1)
227
+ q = split_heads(q)
228
+ k = split_heads(k)
229
+ v = split_heads(v)
230
+
231
+ if layer_past is not None:
232
+ past_key, past_value = layer_past
233
+ k = torch.cat((past_key, k), dim=-2)
234
+ v = torch.cat((past_value, v), dim=-2)
235
+
236
+ cos, sin = self.rotary_emb(v, seq_len=v.shape[-2])
237
+ q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
238
+
239
+ if use_cache is True:
240
+ present = (k,v)
241
+ else:
242
+ present = None
243
+
244
+ attn_output = F.scaled_dot_product_attention(
245
+ q, k, v, attn_mask=None, dropout_p=0.0, is_causal=causal
246
+ )
247
+ attn_output = (
248
+ attn_output.transpose(1, 2)
249
+ .contiguous()
250
+ .view(batch_size, -1, self.config.hidden_size)
251
+ )
252
+ return self.out(attn_output), present
253
+
254
+
255
+ class MLP(nn.Module):
256
+ def __init__(self, config, stage=0):
257
+ super().__init__()
258
+ self.config = config
259
+ self.stage = stage
260
+ self.gate_proj = StageLinear(
261
+ config.hidden_size, config.intermediate_size, bias=False, stage=stage, config=config
262
+ )
263
+ self.up_proj = StageLinear(
264
+ config.hidden_size, config.intermediate_size, bias=False, stage=stage, config=config
265
+ )
266
+ self.down_proj = StageLinear(
267
+ config.intermediate_size, config.hidden_size, bias=False, stage=stage, config=config
268
+ )
269
+ self.act_fn = ACT2FN[config.activation_function]
270
+
271
+ def forward(self, x):
272
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
273
+
274
+ class TransformerBlock(nn.Module):
275
+ def __init__(self, config, stage=0):
276
+ super().__init__()
277
+ self.config = config
278
+ self.stage = stage
279
+ self.attn = TransformerAttention(config, stage)
280
+ self.ffn = MLP(config, stage)
281
+ self.ln1 = LlamaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
282
+ self.ln2 = LlamaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
283
+
284
+ def forward(self, x, mask=None, position_ids=None, use_cache=True, layer_past=None):
285
+ attn_in = self.ln1(x)
286
+ ffn_in = self.ln2(x)
287
+ attn_out, attn_outs = self.attn(attn_in, causal=True, mask=mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
288
+ ffn_out = self.ffn(ffn_in)
289
+ x = x + attn_out + ffn_out
290
+ if not use_cache: attn_outs = None
291
+ return (x, attn_outs)
292
+
293
+ class TransformerPreTrainedModel(PreTrainedModel):
294
+ config_class = TransformerConfig
295
+ base_model_prefix = "transformer"
296
+ is_parallelizable = False
297
+ supports_gradient_checkpointing = True
298
+ _no_split_modules = ["TransformerBlock"]
299
+ _skip_keys_device_placement = "past_key_values"
300
+
301
+ def __init__(self, *inputs, **kwargs):
302
+ super().__init__(*inputs, **kwargs)
303
+
304
+ def _init_weights(self, module):
305
+ """Initialize the weights."""
306
+ if isinstance(module, (nn.Linear)):
307
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
308
+ if module.bias is not None:
309
+ module.bias.data.zero_()
310
+ elif isinstance(module, nn.Embedding):
311
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
312
+ if module.padding_idx is not None:
313
+ module.weight.data[module.padding_idx].zero_()
314
+ elif isinstance(module, nn.LayerNorm):
315
+ module.bias.data.zero_()
316
+ module.weight.data.fill_(1.0)
317
+
318
+ # def _set_gradient_checkpointing(self, module, value=False):
319
+ # if isinstance(module, TransformerModel):
320
+ # module.gradient_checkpointing = value
321
+
322
+ class TransformerModel(TransformerPreTrainedModel):
323
+ def __init__(self, config):
324
+ super().__init__(config)
325
+ # self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
326
+ self.wte = nn.Sequential(
327
+ nn.Embedding(config.vocab_size, config.stage_0_hidden_size),
328
+ StageLinear(config.stage_0_hidden_size, config.hidden_size, bias=False, stage=0, config=config)
329
+ )
330
+ self.h = nn.ModuleList(
331
+ [TransformerBlock(config, stage=1) for i in range(config.num_hidden_layers)]
332
+ )
333
+ self.ln_f = LlamaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
334
+ self.model_parallel = False
335
+ self.device_map = None
336
+ self.gradient_checkpointing = False
337
+ self.post_init()
338
+
339
+ def get_input_embeddings(self):
340
+ return self.wte[0]
341
+
342
+ def set_input_embeddings(self, new_embeddings):
343
+ self.wte[0] = new_embeddings
344
+
345
+ def forward(
346
+ self,
347
+ input_ids: Optional[torch.LongTensor] = None,
348
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
349
+ attention_mask: Optional[torch.FloatTensor] = None,
350
+ token_type_ids: Optional[torch.LongTensor] = None,
351
+ position_ids: Optional[torch.LongTensor] = None,
352
+ head_mask: Optional[torch.FloatTensor] = None,
353
+ inputs_embeds: Optional[torch.FloatTensor] = None,
354
+ encoder_hidden_states: Optional[torch.Tensor] = None,
355
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
356
+ use_cache: Optional[bool] = None,
357
+ output_attentions: Optional[bool] = None,
358
+ output_hidden_states: Optional[bool] = None,
359
+ return_dict: Optional[bool] = None,
360
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
361
+ # soooo not all of the params are able to be used, since I just copied this framework from modeling_gpt2
362
+
363
+ output_attentions = (
364
+ output_attentions
365
+ if output_attentions is not None
366
+ else self.config.output_attentions
367
+ )
368
+ output_hidden_states = (
369
+ output_hidden_states
370
+ if output_hidden_states is not None
371
+ else self.config.output_hidden_states
372
+ )
373
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
374
+ return_dict = (
375
+ return_dict if return_dict is not None else self.config.use_return_dict
376
+ )
377
+ if input_ids is not None and inputs_embeds is not None:
378
+ raise ValueError(
379
+ "You cannot specify both input_ids and inputs_embeds at the same time"
380
+ )
381
+ elif input_ids is not None:
382
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
383
+ input_shape = input_ids.size()
384
+ input_ids = input_ids.view(-1, input_shape[-1])
385
+ batch_size = input_ids.shape[0]
386
+ elif inputs_embeds is not None:
387
+ input_shape = inputs_embeds.size()[:-1]
388
+ batch_size = inputs_embeds.shape[0]
389
+ else:
390
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
391
+
392
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
393
+
394
+ if token_type_ids is not None:
395
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
396
+ if position_ids is not None:
397
+ position_ids = position_ids.view(-1, input_shape[-1])
398
+
399
+ if past_key_values is None:
400
+ past_length = 0
401
+ past_key_values = tuple([None] * len(self.h))
402
+ else:
403
+ past_length = past_key_values[0][0].size(-2)
404
+ if position_ids is None:
405
+ position_ids = torch.arange(
406
+ past_length,
407
+ input_shape[-1] + past_length,
408
+ dtype=torch.long,
409
+ device=device,
410
+ )
411
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
412
+
413
+ if attention_mask is not None:
414
+ if batch_size <= 0:
415
+ raise ValueError("batch_size has to be defined and > 0")
416
+ attention_mask = attention_mask.view(batch_size, -1)
417
+ attention_mask = attention_mask[:, None, None, :]
418
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
419
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
420
+
421
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
422
+ (
423
+ encoder_batch_size,
424
+ encoder_sequence_length,
425
+ _,
426
+ ) = encoder_hidden_states.size()
427
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
428
+ if encoder_attention_mask is None:
429
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
430
+ encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
431
+ else:
432
+ encoder_attention_mask = None
433
+
434
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
435
+
436
+ if inputs_embeds is None:
437
+ inputs_embeds = self.wte(input_ids)
438
+ # print("inputs embeds shape", inputs_embeds.shape)
439
+
440
+ hidden_states = inputs_embeds
441
+
442
+ if token_type_ids is not None:
443
+ token_type_embeds = self.wte(token_type_ids)
444
+ hidden_states = hidden_states + token_type_embeds
445
+
446
+ # output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
447
+ output_shape = (-1,) + (hidden_states.shape[1],) + (hidden_states.size(-1),)
448
+ # print(output_shape, "output shape")
449
+
450
+ if self.gradient_checkpointing and self.training:
451
+ if use_cache:
452
+ # logger.warning_once(
453
+ # "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
454
+ # )
455
+ use_cache = False
456
+
457
+ presents = () if use_cache else None
458
+ all_self_attentions = () if output_attentions else None
459
+ all_cross_attentions = (
460
+ () if output_attentions and self.config.add_cross_attention else None
461
+ )
462
+ all_hidden_states = () if output_hidden_states else None
463
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
464
+ if self.model_parallel:
465
+ torch.cuda.set_device(hidden_states.device)
466
+ if layer_past is not None:
467
+ layer_past = tuple(
468
+ past_state.to(hidden_states.device)
469
+ for past_state in layer_past
470
+ )
471
+ if attention_mask is not None:
472
+ attention_mask = attention_mask.to(hidden_states.device)
473
+ if isinstance(head_mask, torch.Tensor):
474
+ head_mask = head_mask.to(hidden_states.device)
475
+ if output_hidden_states:
476
+ all_hidden_states = all_hidden_states + (hidden_states,)
477
+ outputs = block(hidden_states, mask=attention_mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
478
+ hidden_states = outputs[0]
479
+ if use_cache == True:
480
+ presents = presents + (outputs[1],)
481
+
482
+ hidden_states = self.ln_f(hidden_states)
483
+ hidden_states = hidden_states.view(output_shape)
484
+ if output_hidden_states:
485
+ all_hidden_states = all_hidden_states + (hidden_states,)
486
+
487
+ if not return_dict:
488
+ return tuple(
489
+ v
490
+ for v in [hidden_states, None, all_hidden_states, None, None]
491
+ if v is not None
492
+ )
493
+
494
+ return BaseModelOutputWithPastAndCrossAttentions(
495
+ last_hidden_state=hidden_states,
496
+ past_key_values=presents,
497
+ hidden_states=all_hidden_states,
498
+ attentions=None,
499
+ cross_attentions=None,
500
+ )
501
+
502
+ class TransformerModelForCausalLM(TransformerPreTrainedModel):
503
+ _tied_weights_keys = ["lm_head.1.weight"]
504
+ _tied_weights_keys = []
505
+ def __init__(self, config):
506
+ super().__init__(config)
507
+ self.transformer = TransformerModel(config)
508
+ # self.lm_head = nn.Linear(
509
+ # config.hidden_size, config.vocab_size, bias=False
510
+ # )
511
+ self.lm_head = nn.Sequential(
512
+ StageLinear(config.hidden_size, config.stage_0_hidden_size, bias=False, stage=0, config=config),
513
+ nn.Linear(config.stage_0_hidden_size, config.vocab_size),
514
+ )
515
+ self.model_parallel = False
516
+ self.device_map = None
517
+ self.post_init()
518
+
519
+ def get_output_embeddings(self):
520
+ return self.lm_head[1]
521
+
522
+ def set_output_embeddings(self, new_embeddings):
523
+ # print("Huggingface is inexplicably trying to tie the lm head no matter how many times i'm saying tie_weights False but I'm not letting it")
524
+ self.lm_head[1] = new_embeddings
525
+
526
+ def prepare_inputs_for_generation(
527
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
528
+ ):
529
+ token_type_ids = kwargs.get("token_type_ids", None)
530
+ # only last token for inputs_ids if past is defined in kwargs
531
+ if past_key_values:
532
+ input_ids = input_ids[:, -1].unsqueeze(-1)
533
+ if token_type_ids is not None:
534
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
535
+
536
+ attention_mask = kwargs.get("attention_mask", None)
537
+ position_ids = kwargs.get("position_ids", None)
538
+
539
+ if attention_mask is not None and position_ids is None:
540
+ # create position_ids on the fly for batch generation
541
+ position_ids = attention_mask.long().cumsum(-1) - 1
542
+ position_ids.masked_fill_(attention_mask == 0, 1)
543
+ if past_key_values:
544
+ position_ids = position_ids[:, -1].unsqueeze(-1)
545
+ else:
546
+ position_ids = None
547
+
548
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
549
+ if inputs_embeds is not None and past_key_values is None:
550
+ model_inputs = {"inputs_embeds": inputs_embeds}
551
+ else:
552
+ model_inputs = {"input_ids": input_ids}
553
+
554
+ model_inputs.update(
555
+ {
556
+ "past_key_values": past_key_values,
557
+ "use_cache": kwargs.get("use_cache"),
558
+ "position_ids": position_ids,
559
+ "attention_mask": attention_mask,
560
+ "token_type_ids": token_type_ids,
561
+ }
562
+ )
563
+ return model_inputs
564
+
565
+ def forward(
566
+ self,
567
+ input_ids: Optional[torch.LongTensor] = None,
568
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
569
+ attention_mask: Optional[torch.FloatTensor] = None,
570
+ token_type_ids: Optional[torch.LongTensor] = None,
571
+ position_ids: Optional[torch.LongTensor] = None,
572
+ head_mask: Optional[torch.FloatTensor] = None,
573
+ inputs_embeds: Optional[torch.FloatTensor] = None,
574
+ encoder_hidden_states: Optional[torch.Tensor] = None,
575
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
576
+ labels: Optional[torch.LongTensor] = None,
577
+ use_cache: Optional[bool] = None,
578
+ output_attentions: Optional[bool] = None,
579
+ output_hidden_states: Optional[bool] = None,
580
+ return_dict: Optional[bool] = None,
581
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
582
+ r"""
583
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
584
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
585
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
586
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
587
+ """
588
+ return_dict = (
589
+ return_dict if return_dict is not None else self.config.use_return_dict
590
+ )
591
+
592
+ transformer_outputs = self.transformer(
593
+ input_ids,
594
+ past_key_values=past_key_values,
595
+ attention_mask=attention_mask,
596
+ token_type_ids=token_type_ids,
597
+ position_ids=position_ids,
598
+ head_mask=head_mask,
599
+ inputs_embeds=inputs_embeds,
600
+ encoder_hidden_states=encoder_hidden_states,
601
+ encoder_attention_mask=encoder_attention_mask,
602
+ use_cache=use_cache,
603
+ output_attentions=output_attentions,
604
+ output_hidden_states=output_hidden_states,
605
+ return_dict=return_dict,
606
+ )
607
+ hidden_states = transformer_outputs[0]
608
+ # print("Hidden states shape", hidden_states.shape)
609
+ if self.model_parallel:
610
+ torch.cuda.set_device(self.transformer.first_device)
611
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
612
+
613
+ lm_logits = self.lm_head(hidden_states)
614
+
615
+ loss = None
616
+ if labels is not None:
617
+ # move labels to correct device to enable model parallelism
618
+ labels = labels.to(lm_logits.device)
619
+ # Shift so that tokens < n predict n
620
+ shift_logits = lm_logits[..., :-1, :].contiguous()
621
+ shift_labels = labels[..., 1:].contiguous()
622
+ # Flatten the tokens
623
+ loss_fct = CrossEntropyLoss()
624
+ loss = loss_fct(
625
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
626
+ )
627
+
628
+ if not return_dict:
629
+ output = (lm_logits,) + transformer_outputs[1:]
630
+ return ((loss,) + output) if loss is not None else output
631
+
632
+ return CausalLMOutputWithCrossAttentions(
633
+ loss=loss,
634
+ logits=lm_logits,
635
+ past_key_values=transformer_outputs.past_key_values,
636
+ hidden_states=transformer_outputs.hidden_states,
637
+ attentions=transformer_outputs.attentions,
638
+ cross_attentions=transformer_outputs.cross_attentions,
639
+ )
640
+
641
+ @staticmethod
642
+ def _reorder_cache(
643
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
644
+ ) -> Tuple[Tuple[torch.Tensor]]:
645
+ """
646
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
647
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
648
+ beam_idx at every generation step.
649
+ """
650
+ return tuple(
651
+ tuple(
652
+ past_state.index_select(0, beam_idx.to(past_state.device))
653
+ for past_state in layer_past
654
+ )
655
+ for layer_past in past_key_values
656
+ )