TenaliAI-Banking-v1

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss
1.0141 1.0 3229 0.8505
0.5894 2.0 6458 0.5827
0.505 3.0 9687 0.5536
0.4528 4.0 12916 0.5003
0.4438 5.0 16145 0.4981
0.4142 6.0 19374 0.4867
0.4055 7.0 22603 0.4881
0.3754 8.0 25832 0.4858
0.3923 9.0 29061 0.4877
0.3644 10.0 32290 0.4845
0.375 11.0 35519 0.4832
0.3616 12.0 38748 0.5111
0.3586 13.0 41977 0.5285
0.3508 14.0 45206 0.5084
0.3572 15.0 48435 0.5134
0.3497 16.0 51664 0.5092
0.3431 17.0 54893 0.5354
0.3362 18.0 58122 0.5221
0.3582 19.0 61351 0.5250
0.3442 20.0 64580 0.5362
0.3299 21.0 67809 0.5433
0.3148 22.0 71038 0.5425
0.347 23.0 74267 0.5520
0.3233 24.0 77496 0.5601
0.3163 25.0 80725 0.5510

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for credentek/TenaliAI-Banking-v1

Finetuned
(2373)
this model