Text Generation
English
crayon
language-technologies
File size: 12,217 Bytes
191a87e
a62cfe2
 
95e11ad
a62cfe2
 
 
 
 
 
191a87e
a62cfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77f08df
a62cfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
---
license: bigscience-bloom-rail-1.0
datasets:
- databricks/databricks-dolly-15k
language:
- en
pipeline_tag: text-generation
tags:
- crayon
- language-technologies
---

# Bloomz 1.1B Finetuned on Instructions

## Credit

Code 99.99% copied from 


*https://github.com/bofenghuang/vigogne*


*https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing#scrollTo=DpYr24pR8T_0*


# Inference Code

```python

from peft import PeftModel
from transformers import PreTrainedTokenizer, PreTrainedModel, AutoTokenizer, AutoModelForCausalLM
from peft import PeftModelForCausalLM, LoraConfig
from typing import Optional
from transformers import GenerationConfig
import torch

PROMPT_DICT = {
    "prompt_input": (
        "Below is a^n instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:\n"
    ),
}


def get_model(model_name_or_path: str, load_in_8bit: bool = True, device_map="auto",
              cpu: bool = False) -> PreTrainedModel:
    if cpu:
        model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map=device_map,
                                                     low_cpu_mem_usage=True)
    else:
        model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=load_in_8bit,
                                                     device_map=device_map, torch_dtype=torch.float16)

    return model


def get_peft_model(model: PreTrainedModel, lora_model_name_or_path: Optional[str] = None) -> PeftModelForCausalLM:
    model = PeftModel.from_pretrained(model, lora_model_name_or_path, torch_dtype=torch.float16)

    return model


def get_tokenizer(model_name_or_path: str, max_input_len: int) -> PreTrainedTokenizer:
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, model_max_length=max_input_len,
                                              padding_side="right", use_fast=False)

    return tokenizer


def get_llm_inference_model(base_model_name_or_path: str, lora_model_name_or_path: str, load_in_8bit: bool,
                            device_map) -> PeftModel:
    cpu = True if not torch.cuda.is_available() else False

    model = get_model(base_model_name_or_path, load_in_8bit, device_map, cpu=cpu)

    model = get_peft_model(model, lora_model_name_or_path=lora_model_name_or_path)

    if not load_in_8bit:
        model.half()

    model.eval()

    if torch.__version__ >= "2":
        model = torch.compile(model)

    return model


def generate_prompt(example):
    return (
        PROMPT_DICT["prompt_input"].format_map(example)
        if example["input"]
        else PROMPT_DICT["prompt_no_input"].format_map(example)
    )


def infer(instruction: str, input_text: Optional[str] = None, temperature: float = 0.1, top_p: float = 0.95,
          max_new_tokens: int = 512, early_stopping: bool = True, do_sample: bool = True,
          repetition_penalty: float = 2.5) -> str:
    prompt = generate_prompt({"instruction": instruction, "input": input_text})

    tokenized_inputs = tokenizer(prompt, return_tensors="pt")

    device = "cuda" if torch.cuda.is_available() else "cpu"

    input_ids = tokenized_inputs["input_ids"].to(device)

    generation_config = GenerationConfig(temperature=temperature, top_p=top_p, do_sample=do_sample,
                                         repetition_penalty=repetition_penalty, early_stopping=early_stopping)

    with torch.inference_mode():
        generation_output = model.generate(input_ids=input_ids, generation_config=generation_config,
                                           return_dict_in_generate=True, max_new_tokens=max_new_tokens)

    output = generation_output.sequences[0]

    output = tokenizer.decode(output, skip_special_tokens=True)

    return output.split("### Response:")[1].strip()


base_model_name_or_path = "bigscience/bloomz-1b1"

lora_model_name_or_path = "crayon-coe/dolly-bloom-1b1-en"

model = get_llm_inference_model(base_model_name_or_path, lora_model_name_or_path, True, "auto")

tokenizer = get_tokenizer(base_model_name_or_path, 512)

context = "Write a letter expressing your love for computers"

output = infer(context)

print(output)

# Output
# I am so grateful to have been able access this wonderful computer system and its amazing features, which I can now use daily with ease. 
# 
# My heartfelt thanks go out in advance of all my friends who are using it as well. 
# Thank you again!

```
Note: If failing, you might need to add *offload_folder="some folder name"* when getting the PeftModel.

# Training Parameters

```json
{
    "max_input_len": 512,
    "load_in_8bit": True,
    "model_name_or_path": "bigscience/bloomz-1b1",
    "device_map": "auto",
    "bias": "none",
    "lora_dropout": 0.05,
    "lora_alpha": 32,
    "target_modules": ["query_key_value"],
    "task_type": "CAUSAL_LM",
    "lora_r": 16,
    "pad_to_multiple_of": 8,
    "num_train_epochs": 3,
    "learning_rate": 0.0003,
    "gradient_accumulation_steps": 16,
    "per_device_train_batch_size": 8,
    "val_set_size": 500,
    "save_steps": 200,
    "eval_steps": 200,
    "evaluation_strategy": "steps",
    "save_strategy": "steps"
}
```

# Training Code

```python
# coding=utf-8
# Code 99.99% copied and adapted from:
#    https://github.com/bofenghuang/vigogne
#    https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing#scrollTo=DpYr24pR8T_0


import os
import sys
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence

import bitsandbytes as bnb
import fire
import torch
import transformers
from datasets import load_dataset
from peft import LoraConfig, TaskType, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer

IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"

PROMPT_DICT = {
    "prompt_input": (
        "Below is a^n instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:\n"
    ),
}


def generate_prompt(example):
    return (
        PROMPT_DICT["prompt_input"].format_map(example)
        if example["input"]
        else PROMPT_DICT["prompt_no_input"].format_map(example)
    )


# Modified from: https://github.com/bofenghuang/stanford_alpaca/blob/eb5b171d9b103a12a8e14e0edca9cbc45fe1d512/train.py#L166-L182
# Almost same to transformers.DataCollatorForSeq2Seq
@dataclass
class DataCollatorForSupervisedDataset(object):
    """Collate examples for supervised fine-tuning."""

    tokenizer: transformers.PreTrainedTokenizer
    pad_to_multiple_of: Optional[int] = None

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        # dtype = torch.long
        # input_ids, labels = tuple([torch.LongTensor(instance[key]) for instance in instances] for key in ("input_ids", "labels"))
        input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))

        if self.pad_to_multiple_of is not None:
            max_length_index, max_length = max(enumerate([len(input_ids_) for input_ids_ in input_ids]),
                                               key=lambda x: x[1])
            # int(math.ceil
            n_padding = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of - max_length
            # Pad the longest example to pad_to_multiple_of * N
            input_ids[max_length_index].extend([self.tokenizer.pad_token_id] * n_padding)
            labels[max_length_index].extend([IGNORE_INDEX] * n_padding)

        input_ids = [torch.LongTensor(input_ids_) for input_ids_ in input_ids]
        labels = [torch.LongTensor(labels_) for labels_ in labels]

        input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True,
                                                    padding_value=self.tokenizer.pad_token_id)
        labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)

        return dict(input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id))


def train(model_name_or_path: str, output_dir: str, data_path: str, val_set_size: int = 500,
          model_max_length: int = 512, lora_r: int = 16, lora_alpha: int = 32, lora_dropout: float = 0.05,
          target_modules: List[str] = ["query_key_value"], num_train_epochs: int = 3, learning_rate: float = 0.0001,
          per_device_train_batch_size: int = 8, gradient_accumulation_steps: int = 16, **kwargs):
    device_map = "auto"

    model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True, device_map=device_map)

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, model_max_length=model_max_length,
                                              padding_side="right", use_fast=False)

    model = prepare_model_for_int8_training(model)

    lora_config = LoraConfig(r=lora_r, lora_alpha=lora_alpha, target_modules=target_modules, lora_dropout=lora_dropout,
                             bias="none", task_type=TaskType.CAUSAL_LM)

    model = get_peft_model(model, lora_config)

    model.print_trainable_parameters()

    # Load data
    data = load_dataset("json", data_files=data_path)

    def preprocess_function(example):
        # Format prompt
        user_prompt = generate_prompt(example)

        # Get prompt length for masking
        len_user_prompt_tokens = len(tokenizer(user_prompt, truncation=True)["input_ids"])

        input_ids = tokenizer(user_prompt + example["output"] + tokenizer.eos_token, truncation=True)["input_ids"]
        labels = [IGNORE_INDEX] * len_user_prompt_tokens + input_ids[len_user_prompt_tokens:]

        return {"input_ids": input_ids, "labels": labels}

    if val_set_size > 0:
        train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
        train_data = train_val["train"].shuffle().map(preprocess_function, remove_columns=data["train"].column_names)
        val_data = train_val["test"].map(preprocess_function, remove_columns=data["train"].column_names)
    else:
        train_data = data["train"].shuffle().map(preprocess_function, remove_columns=data["train"].column_names)
        val_data = None

    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_data,
        eval_dataset=val_data,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=per_device_train_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            num_train_epochs=num_train_epochs,
            learning_rate=learning_rate,
            fp16=True,
            output_dir=output_dir,
            load_best_model_at_end=True if val_set_size > 0 else False,
            **kwargs,
        ),
        data_collator=DataCollatorForSupervisedDataset(tokenizer=tokenizer, pad_to_multiple_of=8),
    )
    print(trainer.args)

    # Silence the warnings. Please re-enable for inference!
    model.config.use_cache = False

    old_state_dict = model.state_dict
    model.state_dict = (lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())).__get__(model,
                                                                                                          type(model))

    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)

    trainer.train()

    model.save_pretrained(output_dir)


if __name__ == "__main__":
    fire.Fire(train)

```