Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,332 @@
|
|
1 |
---
|
2 |
-
license: bigscience-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: bigscience-bloom-rail-1.0
|
3 |
+
datasets:
|
4 |
+
- tatsu-lab/alpaca
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- crayon
|
10 |
+
- language-technologies
|
11 |
---
|
12 |
+
|
13 |
+
# Bloomz 1.1B Finetuned on Instructions
|
14 |
+
|
15 |
+
## Credit
|
16 |
+
|
17 |
+
Code 99.99% copied from
|
18 |
+
|
19 |
+
|
20 |
+
*https://github.com/bofenghuang/vigogne*
|
21 |
+
|
22 |
+
|
23 |
+
*https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing#scrollTo=DpYr24pR8T_0*
|
24 |
+
|
25 |
+
|
26 |
+
# Inference Code
|
27 |
+
|
28 |
+
```python
|
29 |
+
|
30 |
+
from peft import PeftModel
|
31 |
+
from transformers import PreTrainedTokenizer, PreTrainedModel, AutoTokenizer, AutoModelForCausalLM
|
32 |
+
from peft import PeftModelForCausalLM, LoraConfig
|
33 |
+
from typing import Optional
|
34 |
+
from transformers import GenerationConfig
|
35 |
+
import torch
|
36 |
+
|
37 |
+
PROMPT_DICT = {
|
38 |
+
"prompt_input": (
|
39 |
+
"Below is a^n instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
40 |
+
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
41 |
+
),
|
42 |
+
"prompt_no_input": (
|
43 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
44 |
+
"### Instruction:\n{instruction}\n\n### Response:\n"
|
45 |
+
),
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
def get_model(model_name_or_path: str, load_in_8bit: bool = True, device_map="auto",
|
50 |
+
cpu: bool = False) -> PreTrainedModel:
|
51 |
+
if cpu:
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map=device_map,
|
53 |
+
low_cpu_mem_usage=True)
|
54 |
+
else:
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=load_in_8bit,
|
56 |
+
device_map=device_map, torch_dtype=torch.float16)
|
57 |
+
|
58 |
+
return model
|
59 |
+
|
60 |
+
|
61 |
+
def get_peft_model(model: PreTrainedModel, lora_model_name_or_path: Optional[str] = None) -> PeftModelForCausalLM:
|
62 |
+
model = PeftModel.from_pretrained(model, lora_model_name_or_path, torch_dtype=torch.float16)
|
63 |
+
|
64 |
+
return model
|
65 |
+
|
66 |
+
|
67 |
+
def get_tokenizer(model_name_or_path: str, max_input_len: int) -> PreTrainedTokenizer:
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, model_max_length=max_input_len,
|
69 |
+
padding_side="right", use_fast=False)
|
70 |
+
|
71 |
+
return tokenizer
|
72 |
+
|
73 |
+
|
74 |
+
def get_llm_inference_model(base_model_name_or_path: str, lora_model_name_or_path: str, load_in_8bit: bool,
|
75 |
+
device_map) -> PeftModel:
|
76 |
+
cpu = True if not torch.cuda.is_available() else False
|
77 |
+
|
78 |
+
model = get_model(base_model_name_or_path, load_in_8bit, device_map, cpu=cpu)
|
79 |
+
|
80 |
+
model = get_peft_model(model, lora_model_name_or_path=lora_model_name_or_path)
|
81 |
+
|
82 |
+
if not load_in_8bit:
|
83 |
+
model.half()
|
84 |
+
|
85 |
+
model.eval()
|
86 |
+
|
87 |
+
if torch.__version__ >= "2":
|
88 |
+
model = torch.compile(model)
|
89 |
+
|
90 |
+
return model
|
91 |
+
|
92 |
+
|
93 |
+
def generate_prompt(example):
|
94 |
+
return (
|
95 |
+
PROMPT_DICT["prompt_input"].format_map(example)
|
96 |
+
if example["input"]
|
97 |
+
else PROMPT_DICT["prompt_no_input"].format_map(example)
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
def infer(instruction: str, input_text: Optional[str] = None, temperature: float = 0.1, top_p: float = 0.95,
|
102 |
+
max_new_tokens: int = 512, early_stopping: bool = True, do_sample: bool = True,
|
103 |
+
repetition_penalty: float = 2.5) -> str:
|
104 |
+
prompt = generate_prompt({"instruction": instruction, "input": input_text})
|
105 |
+
|
106 |
+
tokenized_inputs = tokenizer(prompt, return_tensors="pt")
|
107 |
+
|
108 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
+
|
110 |
+
input_ids = tokenized_inputs["input_ids"].to(device)
|
111 |
+
|
112 |
+
generation_config = GenerationConfig(temperature=temperature, top_p=top_p, do_sample=do_sample,
|
113 |
+
repetition_penalty=repetition_penalty, early_stopping=early_stopping)
|
114 |
+
|
115 |
+
with torch.inference_mode():
|
116 |
+
generation_output = model.generate(input_ids=input_ids, generation_config=generation_config,
|
117 |
+
return_dict_in_generate=True, max_new_tokens=max_new_tokens)
|
118 |
+
|
119 |
+
output = generation_output.sequences[0]
|
120 |
+
|
121 |
+
output = tokenizer.decode(output, skip_special_tokens=True)
|
122 |
+
|
123 |
+
return output.split("### Response:")[1].strip()
|
124 |
+
|
125 |
+
|
126 |
+
base_model_name_or_path = "bigscience/bloomz-1b1"
|
127 |
+
|
128 |
+
lora_model_name_or_path = "crayon-coe/dolly-bloom-1b1-en"
|
129 |
+
|
130 |
+
model = get_llm_inference_model(base_model_name_or_path, lora_model_name_or_path, True, "auto")
|
131 |
+
|
132 |
+
tokenizer = get_tokenizer(base_model_name_or_path, 512)
|
133 |
+
|
134 |
+
context = "Write a letter expressing your love for computers"
|
135 |
+
|
136 |
+
output = infer(context)
|
137 |
+
|
138 |
+
print(output)
|
139 |
+
|
140 |
+
# Output
|
141 |
+
# I am so grateful to have been able access this wonderful computer system and its amazing features, which I can now use daily with ease.
|
142 |
+
#
|
143 |
+
# My heartfelt thanks go out in advance of all my friends who are using it as well.
|
144 |
+
# Thank you again!
|
145 |
+
|
146 |
+
```
|
147 |
+
|
148 |
+
# Training Parameters
|
149 |
+
|
150 |
+
```json
|
151 |
+
{
|
152 |
+
"max_input_len": 512,
|
153 |
+
"load_in_8bit": True,
|
154 |
+
"model_name_or_path": "bigscience/bloomz-1b1",
|
155 |
+
"device_map": "auto",
|
156 |
+
"bias": "none",
|
157 |
+
"lora_dropout": 0.05,
|
158 |
+
"lora_alpha": 32,
|
159 |
+
"target_modules": ["query_key_value"],
|
160 |
+
"task_type": "CAUSAL_LM",
|
161 |
+
"lora_r": 16,
|
162 |
+
"pad_to_multiple_of": 8,
|
163 |
+
"num_train_epochs": 3,
|
164 |
+
"learning_rate": 0.0003,
|
165 |
+
"gradient_accumulation_steps": 16,
|
166 |
+
"per_device_train_batch_size": 8,
|
167 |
+
"val_set_size": 500,
|
168 |
+
"save_steps": 200,
|
169 |
+
"eval_steps": 200,
|
170 |
+
"evaluation_strategy": "steps",
|
171 |
+
"save_strategy": "steps"
|
172 |
+
}
|
173 |
+
```
|
174 |
+
|
175 |
+
# Training Code
|
176 |
+
|
177 |
+
```python
|
178 |
+
# coding=utf-8
|
179 |
+
# Code 99.99% copied and adapted from:
|
180 |
+
# https://github.com/bofenghuang/vigogne
|
181 |
+
# https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing#scrollTo=DpYr24pR8T_0
|
182 |
+
|
183 |
+
|
184 |
+
import os
|
185 |
+
import sys
|
186 |
+
from dataclasses import dataclass
|
187 |
+
from typing import Dict, List, Optional, Sequence
|
188 |
+
|
189 |
+
import bitsandbytes as bnb
|
190 |
+
import fire
|
191 |
+
import torch
|
192 |
+
import transformers
|
193 |
+
from datasets import load_dataset
|
194 |
+
from peft import LoraConfig, TaskType, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training
|
195 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
|
196 |
+
|
197 |
+
IGNORE_INDEX = -100
|
198 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
199 |
+
|
200 |
+
PROMPT_DICT = {
|
201 |
+
"prompt_input": (
|
202 |
+
"Below is a^n instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
203 |
+
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
204 |
+
),
|
205 |
+
"prompt_no_input": (
|
206 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
207 |
+
"### Instruction:\n{instruction}\n\n### Response:\n"
|
208 |
+
),
|
209 |
+
}
|
210 |
+
|
211 |
+
|
212 |
+
def generate_prompt(example):
|
213 |
+
return (
|
214 |
+
PROMPT_DICT["prompt_input"].format_map(example)
|
215 |
+
if example["input"]
|
216 |
+
else PROMPT_DICT["prompt_no_input"].format_map(example)
|
217 |
+
)
|
218 |
+
|
219 |
+
|
220 |
+
# Modified from: https://github.com/bofenghuang/stanford_alpaca/blob/eb5b171d9b103a12a8e14e0edca9cbc45fe1d512/train.py#L166-L182
|
221 |
+
# Almost same to transformers.DataCollatorForSeq2Seq
|
222 |
+
@dataclass
|
223 |
+
class DataCollatorForSupervisedDataset(object):
|
224 |
+
"""Collate examples for supervised fine-tuning."""
|
225 |
+
|
226 |
+
tokenizer: transformers.PreTrainedTokenizer
|
227 |
+
pad_to_multiple_of: Optional[int] = None
|
228 |
+
|
229 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
230 |
+
# dtype = torch.long
|
231 |
+
# input_ids, labels = tuple([torch.LongTensor(instance[key]) for instance in instances] for key in ("input_ids", "labels"))
|
232 |
+
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
|
233 |
+
|
234 |
+
if self.pad_to_multiple_of is not None:
|
235 |
+
max_length_index, max_length = max(enumerate([len(input_ids_) for input_ids_ in input_ids]),
|
236 |
+
key=lambda x: x[1])
|
237 |
+
# int(math.ceil
|
238 |
+
n_padding = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of - max_length
|
239 |
+
# Pad the longest example to pad_to_multiple_of * N
|
240 |
+
input_ids[max_length_index].extend([self.tokenizer.pad_token_id] * n_padding)
|
241 |
+
labels[max_length_index].extend([IGNORE_INDEX] * n_padding)
|
242 |
+
|
243 |
+
input_ids = [torch.LongTensor(input_ids_) for input_ids_ in input_ids]
|
244 |
+
labels = [torch.LongTensor(labels_) for labels_ in labels]
|
245 |
+
|
246 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True,
|
247 |
+
padding_value=self.tokenizer.pad_token_id)
|
248 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
|
249 |
+
|
250 |
+
return dict(input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id))
|
251 |
+
|
252 |
+
|
253 |
+
def train(model_name_or_path: str, output_dir: str, data_path: str, val_set_size: int = 500,
|
254 |
+
model_max_length: int = 512, lora_r: int = 16, lora_alpha: int = 32, lora_dropout: float = 0.05,
|
255 |
+
target_modules: List[str] = ["query_key_value"], num_train_epochs: int = 3, learning_rate: float = 0.0001,
|
256 |
+
per_device_train_batch_size: int = 8, gradient_accumulation_steps: int = 16, **kwargs):
|
257 |
+
device_map = "auto"
|
258 |
+
|
259 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True, device_map=device_map)
|
260 |
+
|
261 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, model_max_length=model_max_length,
|
262 |
+
padding_side="right", use_fast=False)
|
263 |
+
|
264 |
+
model = prepare_model_for_int8_training(model)
|
265 |
+
|
266 |
+
lora_config = LoraConfig(r=lora_r, lora_alpha=lora_alpha, target_modules=target_modules, lora_dropout=lora_dropout,
|
267 |
+
bias="none", task_type=TaskType.CAUSAL_LM)
|
268 |
+
|
269 |
+
model = get_peft_model(model, lora_config)
|
270 |
+
|
271 |
+
model.print_trainable_parameters()
|
272 |
+
|
273 |
+
# Load data
|
274 |
+
data = load_dataset("json", data_files=data_path)
|
275 |
+
|
276 |
+
def preprocess_function(example):
|
277 |
+
# Format prompt
|
278 |
+
user_prompt = generate_prompt(example)
|
279 |
+
|
280 |
+
# Get prompt length for masking
|
281 |
+
len_user_prompt_tokens = len(tokenizer(user_prompt, truncation=True)["input_ids"])
|
282 |
+
|
283 |
+
input_ids = tokenizer(user_prompt + example["output"] + tokenizer.eos_token, truncation=True)["input_ids"]
|
284 |
+
labels = [IGNORE_INDEX] * len_user_prompt_tokens + input_ids[len_user_prompt_tokens:]
|
285 |
+
|
286 |
+
return {"input_ids": input_ids, "labels": labels}
|
287 |
+
|
288 |
+
if val_set_size > 0:
|
289 |
+
train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
|
290 |
+
train_data = train_val["train"].shuffle().map(preprocess_function, remove_columns=data["train"].column_names)
|
291 |
+
val_data = train_val["test"].map(preprocess_function, remove_columns=data["train"].column_names)
|
292 |
+
else:
|
293 |
+
train_data = data["train"].shuffle().map(preprocess_function, remove_columns=data["train"].column_names)
|
294 |
+
val_data = None
|
295 |
+
|
296 |
+
trainer = transformers.Trainer(
|
297 |
+
model=model,
|
298 |
+
train_dataset=train_data,
|
299 |
+
eval_dataset=val_data,
|
300 |
+
args=transformers.TrainingArguments(
|
301 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
302 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
303 |
+
num_train_epochs=num_train_epochs,
|
304 |
+
learning_rate=learning_rate,
|
305 |
+
fp16=True,
|
306 |
+
output_dir=output_dir,
|
307 |
+
load_best_model_at_end=True if val_set_size > 0 else False,
|
308 |
+
**kwargs,
|
309 |
+
),
|
310 |
+
data_collator=DataCollatorForSupervisedDataset(tokenizer=tokenizer, pad_to_multiple_of=8),
|
311 |
+
)
|
312 |
+
print(trainer.args)
|
313 |
+
|
314 |
+
# Silence the warnings. Please re-enable for inference!
|
315 |
+
model.config.use_cache = False
|
316 |
+
|
317 |
+
old_state_dict = model.state_dict
|
318 |
+
model.state_dict = (lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())).__get__(model,
|
319 |
+
type(model))
|
320 |
+
|
321 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
322 |
+
model = torch.compile(model)
|
323 |
+
|
324 |
+
trainer.train()
|
325 |
+
|
326 |
+
model.save_pretrained(output_dir)
|
327 |
+
|
328 |
+
|
329 |
+
if __name__ == "__main__":
|
330 |
+
fire.Fire(train)
|
331 |
+
|
332 |
+
```
|