100M_low_500_495
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.3007
- Accuracy: 0.3945
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 32
- eval_batch_size: 16
- seed: 495
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5.0925 | 0.1078 | 1000 | 5.0207 | 0.2273 |
4.5826 | 0.2156 | 2000 | 4.5255 | 0.2688 |
4.3361 | 0.3235 | 3000 | 4.2429 | 0.2974 |
4.1659 | 0.4313 | 4000 | 4.0975 | 0.3122 |
4.0552 | 0.5391 | 5000 | 3.9984 | 0.3209 |
4.0014 | 0.6469 | 6000 | 3.9248 | 0.3272 |
3.9359 | 0.7547 | 7000 | 3.8724 | 0.3323 |
3.8791 | 0.8625 | 8000 | 3.8246 | 0.3367 |
3.8491 | 0.9704 | 9000 | 3.7871 | 0.3408 |
3.7685 | 1.0782 | 10000 | 3.7571 | 0.3436 |
3.7832 | 1.1860 | 11000 | 3.7309 | 0.3458 |
3.7448 | 1.2938 | 12000 | 3.7076 | 0.3478 |
3.717 | 1.4016 | 13000 | 3.6833 | 0.3507 |
3.7042 | 1.5094 | 14000 | 3.6630 | 0.3525 |
3.693 | 1.6173 | 15000 | 3.6447 | 0.3545 |
3.6681 | 1.7251 | 16000 | 3.6263 | 0.3563 |
3.6691 | 1.8329 | 17000 | 3.6127 | 0.3578 |
3.6447 | 1.9407 | 18000 | 3.5970 | 0.3588 |
3.587 | 2.0485 | 19000 | 3.5873 | 0.3606 |
3.5655 | 2.1563 | 20000 | 3.5788 | 0.3617 |
3.5495 | 2.2642 | 21000 | 3.5679 | 0.3628 |
3.5554 | 2.3720 | 22000 | 3.5587 | 0.3641 |
3.5481 | 2.4798 | 23000 | 3.5474 | 0.3650 |
3.5407 | 2.5876 | 24000 | 3.5363 | 0.3661 |
3.5515 | 2.6954 | 25000 | 3.5235 | 0.3672 |
3.5534 | 2.8032 | 26000 | 3.5183 | 0.3678 |
3.5398 | 2.9111 | 27000 | 3.5073 | 0.3690 |
3.4382 | 3.0189 | 28000 | 3.5020 | 0.3699 |
3.454 | 3.1267 | 29000 | 3.4990 | 0.3705 |
3.472 | 3.2345 | 30000 | 3.4921 | 0.3709 |
3.4586 | 3.3423 | 31000 | 3.4878 | 0.3720 |
3.4665 | 3.4501 | 32000 | 3.4812 | 0.3722 |
3.4546 | 3.5580 | 33000 | 3.4747 | 0.3731 |
3.4782 | 3.6658 | 34000 | 3.4664 | 0.3738 |
3.4543 | 3.7736 | 35000 | 3.4612 | 0.3742 |
3.4392 | 3.8814 | 36000 | 3.4534 | 0.3750 |
3.4613 | 3.9892 | 37000 | 3.4493 | 0.3755 |
3.3757 | 4.0970 | 38000 | 3.4521 | 0.3764 |
3.3854 | 4.2049 | 39000 | 3.4457 | 0.3765 |
3.3893 | 4.3127 | 40000 | 3.4418 | 0.3771 |
3.4053 | 4.4205 | 41000 | 3.4355 | 0.3776 |
3.4045 | 4.5283 | 42000 | 3.4294 | 0.3784 |
3.3941 | 4.6361 | 43000 | 3.4254 | 0.3783 |
3.4 | 4.7439 | 44000 | 3.4218 | 0.3793 |
3.403 | 4.8518 | 45000 | 3.4149 | 0.3797 |
3.3859 | 4.9596 | 46000 | 3.4115 | 0.3803 |
3.3109 | 5.0674 | 47000 | 3.4175 | 0.3803 |
3.3138 | 5.1752 | 48000 | 3.4124 | 0.3808 |
3.3378 | 5.2830 | 49000 | 3.4071 | 0.3812 |
3.3421 | 5.3908 | 50000 | 3.4068 | 0.3815 |
3.343 | 5.4987 | 51000 | 3.4004 | 0.3821 |
3.3504 | 5.6065 | 52000 | 3.3944 | 0.3825 |
3.3439 | 5.7143 | 53000 | 3.3909 | 0.3827 |
3.3313 | 5.8221 | 54000 | 3.3855 | 0.3834 |
3.3531 | 5.9299 | 55000 | 3.3823 | 0.3837 |
3.2507 | 6.0377 | 56000 | 3.3856 | 0.3840 |
3.2697 | 6.1456 | 57000 | 3.3823 | 0.3840 |
3.2864 | 6.2534 | 58000 | 3.3805 | 0.3845 |
3.2703 | 6.3612 | 59000 | 3.3770 | 0.3850 |
3.2881 | 6.4690 | 60000 | 3.3736 | 0.3847 |
3.2802 | 6.5768 | 61000 | 3.3686 | 0.3856 |
3.3016 | 6.6846 | 62000 | 3.3637 | 0.3863 |
3.274 | 6.7925 | 63000 | 3.3623 | 0.3863 |
3.2783 | 6.9003 | 64000 | 3.3567 | 0.3869 |
3.2099 | 7.0081 | 65000 | 3.3589 | 0.3873 |
3.2031 | 7.1159 | 66000 | 3.3606 | 0.3869 |
3.2278 | 7.2237 | 67000 | 3.3592 | 0.3875 |
3.2282 | 7.3315 | 68000 | 3.3537 | 0.3877 |
3.2237 | 7.4394 | 69000 | 3.3503 | 0.3878 |
3.2348 | 7.5472 | 70000 | 3.3463 | 0.3884 |
3.2284 | 7.6550 | 71000 | 3.3422 | 0.3889 |
3.233 | 7.7628 | 72000 | 3.3397 | 0.3894 |
3.2421 | 7.8706 | 73000 | 3.3369 | 0.3895 |
3.2536 | 7.9784 | 74000 | 3.3328 | 0.3902 |
3.1647 | 8.0863 | 75000 | 3.3391 | 0.3898 |
3.1876 | 8.1941 | 76000 | 3.3366 | 0.3902 |
3.1866 | 8.3019 | 77000 | 3.3340 | 0.3905 |
3.1783 | 8.4097 | 78000 | 3.3318 | 0.3907 |
3.1778 | 8.5175 | 79000 | 3.3285 | 0.3912 |
3.2113 | 8.6253 | 80000 | 3.3226 | 0.3916 |
3.1655 | 8.7332 | 81000 | 3.3209 | 0.3917 |
3.1812 | 8.8410 | 82000 | 3.3189 | 0.3921 |
3.1955 | 8.9488 | 83000 | 3.3142 | 0.3926 |
3.132 | 9.0566 | 84000 | 3.3179 | 0.3925 |
3.1264 | 9.1644 | 85000 | 3.3165 | 0.3927 |
3.1268 | 9.2722 | 86000 | 3.3139 | 0.3930 |
3.13 | 9.3801 | 87000 | 3.3120 | 0.3932 |
3.1275 | 9.4879 | 88000 | 3.3094 | 0.3936 |
3.1298 | 9.5957 | 89000 | 3.3061 | 0.3938 |
3.1371 | 9.7035 | 90000 | 3.3039 | 0.3942 |
3.1463 | 9.8113 | 91000 | 3.3014 | 0.3944 |
3.1472 | 9.9191 | 92000 | 3.3007 | 0.3945 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support