100M__634
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.4625
- Accuracy: 0.3763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 32
- eval_batch_size: 16
- seed: 634
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
5.0778 | 0.1078 | 1000 | 0.2270 | 5.0244 |
4.5738 | 0.2156 | 2000 | 0.2719 | 4.5008 |
4.309 | 0.3235 | 3000 | 0.2995 | 4.2284 |
4.1524 | 0.4313 | 4000 | 0.3122 | 4.0876 |
4.0714 | 0.5391 | 5000 | 0.3216 | 3.9901 |
3.9631 | 0.6469 | 6000 | 0.3281 | 3.9180 |
3.9285 | 0.7547 | 7000 | 0.3334 | 3.8616 |
3.8676 | 0.8625 | 8000 | 0.3375 | 3.8167 |
3.8648 | 0.9704 | 9000 | 0.3409 | 3.7798 |
3.7661 | 1.0782 | 10000 | 0.3448 | 3.7474 |
3.7415 | 1.1860 | 11000 | 0.3470 | 3.7234 |
3.7241 | 1.2938 | 12000 | 0.3486 | 3.7014 |
3.715 | 1.4016 | 13000 | 0.3512 | 3.6799 |
3.6982 | 1.5094 | 14000 | 0.3534 | 3.6556 |
3.6829 | 1.6173 | 15000 | 0.3553 | 3.6376 |
3.6554 | 1.7251 | 16000 | 0.3569 | 3.6238 |
3.6345 | 1.8329 | 17000 | 0.3583 | 3.6062 |
3.6469 | 1.9407 | 18000 | 0.3599 | 3.5914 |
3.5639 | 2.0485 | 19000 | 0.3609 | 3.5848 |
3.5606 | 2.1563 | 20000 | 0.3622 | 3.5729 |
3.5497 | 2.2642 | 21000 | 0.3636 | 3.5615 |
3.5624 | 2.3720 | 22000 | 0.3644 | 3.5510 |
3.5459 | 2.4798 | 23000 | 0.3655 | 3.5396 |
3.5482 | 2.5876 | 24000 | 0.3666 | 3.5318 |
3.5542 | 2.6954 | 25000 | 0.3674 | 3.5221 |
3.5342 | 2.8032 | 26000 | 0.3682 | 3.5146 |
3.5381 | 2.9111 | 27000 | 0.3693 | 3.5050 |
3.4278 | 3.0189 | 28000 | 0.3700 | 3.5020 |
3.4513 | 3.1267 | 29000 | 0.3708 | 3.4942 |
3.4627 | 3.2345 | 30000 | 0.3713 | 3.4898 |
3.4463 | 3.3423 | 31000 | 0.3720 | 3.4832 |
3.461 | 3.4501 | 32000 | 0.3727 | 3.4776 |
3.4454 | 3.5580 | 33000 | 0.3733 | 3.4710 |
3.4627 | 3.6658 | 34000 | 0.3741 | 3.4632 |
3.444 | 3.7736 | 35000 | 0.3743 | 3.4588 |
3.4513 | 3.8814 | 36000 | 0.3752 | 3.4522 |
3.4411 | 3.9892 | 37000 | 0.3758 | 3.4460 |
3.3781 | 4.0970 | 38000 | 0.3764 | 3.4480 |
3.3767 | 4.2049 | 39000 | 0.3767 | 3.4423 |
3.3947 | 4.3127 | 40000 | 0.3773 | 3.4385 |
3.389 | 4.4205 | 41000 | 0.3776 | 3.4339 |
3.3849 | 4.5283 | 42000 | 0.3786 | 3.4289 |
3.4041 | 4.6361 | 43000 | 0.3791 | 3.4244 |
3.3693 | 4.7439 | 44000 | 0.3796 | 3.4180 |
3.3953 | 4.8518 | 45000 | 0.3799 | 3.4133 |
3.3841 | 4.9596 | 46000 | 0.3805 | 3.4098 |
3.3078 | 5.0674 | 47000 | 0.3803 | 3.4134 |
3.315 | 5.1752 | 48000 | 0.3810 | 3.4103 |
3.3108 | 5.2830 | 49000 | 0.3809 | 3.4087 |
3.3356 | 5.3908 | 50000 | 0.3818 | 3.4030 |
3.3193 | 5.4987 | 51000 | 0.3824 | 3.3966 |
3.3407 | 5.6065 | 52000 | 0.3826 | 3.3946 |
3.348 | 5.7143 | 53000 | 0.3831 | 3.3898 |
3.3288 | 5.8221 | 54000 | 0.3834 | 3.3838 |
3.3283 | 5.9299 | 55000 | 0.3838 | 3.3800 |
3.2613 | 6.0377 | 56000 | 0.3840 | 3.3837 |
3.2509 | 6.1456 | 57000 | 0.3840 | 3.3834 |
3.2539 | 6.2534 | 58000 | 0.3846 | 3.3802 |
3.2851 | 6.3612 | 59000 | 0.3851 | 3.3774 |
3.2878 | 6.4690 | 60000 | 0.3853 | 3.3725 |
3.2817 | 6.5768 | 61000 | 0.3855 | 3.3693 |
3.2722 | 6.6846 | 62000 | 0.3863 | 3.3639 |
3.2773 | 6.7925 | 63000 | 0.3867 | 3.3609 |
3.2948 | 6.9003 | 64000 | 0.3872 | 3.3567 |
3.1985 | 7.0081 | 65000 | 0.3872 | 3.3584 |
3.2183 | 7.1159 | 66000 | 0.3874 | 3.3596 |
3.2204 | 7.2237 | 67000 | 0.3878 | 3.3558 |
3.2237 | 7.3315 | 68000 | 0.3881 | 3.3549 |
3.2464 | 7.4394 | 69000 | 0.3881 | 3.3498 |
3.2299 | 7.5472 | 70000 | 0.3887 | 3.3457 |
3.2273 | 7.6550 | 71000 | 0.3889 | 3.3421 |
3.2389 | 7.7628 | 72000 | 0.3894 | 3.3363 |
3.2224 | 7.8706 | 73000 | 0.3899 | 3.3338 |
3.2305 | 7.9784 | 74000 | 0.3902 | 3.3320 |
3.1599 | 8.0863 | 75000 | 0.3901 | 3.3381 |
3.1664 | 8.1941 | 76000 | 0.3903 | 3.3350 |
3.1774 | 8.3019 | 77000 | 0.3903 | 3.3318 |
3.1677 | 8.4097 | 78000 | 0.3909 | 3.3281 |
3.1821 | 8.5175 | 79000 | 0.3913 | 3.3258 |
3.1805 | 8.6253 | 80000 | 0.3917 | 3.3235 |
3.1932 | 8.7332 | 81000 | 0.3920 | 3.3191 |
3.1771 | 8.8410 | 82000 | 0.3924 | 3.3148 |
3.1927 | 8.9488 | 83000 | 0.3927 | 3.3131 |
3.1235 | 9.0566 | 84000 | 0.3926 | 3.3163 |
3.1221 | 9.1644 | 85000 | 0.3929 | 3.3138 |
3.1312 | 9.2722 | 86000 | 0.3931 | 3.3123 |
3.1204 | 9.3801 | 87000 | 0.3934 | 3.3111 |
3.1289 | 9.4879 | 88000 | 0.3939 | 3.3072 |
3.1452 | 9.5957 | 89000 | 0.3940 | 3.3056 |
3.1301 | 9.7035 | 90000 | 0.3943 | 3.3030 |
3.1314 | 9.8113 | 91000 | 0.3943 | 3.3021 |
3.1061 | 9.9191 | 92000 | 0.3946 | 3.3004 |
3.2987 | 10.0270 | 93000 | 3.4598 | 0.3772 |
3.3802 | 10.1348 | 94000 | 3.4705 | 0.3756 |
3.3831 | 10.2426 | 95000 | 3.4625 | 0.3763 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support