square_run_second_vote_full_pic_75_age_gender

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3432
  • F1 Macro: 0.3328
  • F1 Micro: 0.4697
  • F1 Weighted: 0.4098
  • Precision Macro: 0.3270
  • Precision Micro: 0.4697
  • Precision Weighted: 0.4161
  • Recall Macro: 0.3849
  • Recall Micro: 0.4697
  • Recall Weighted: 0.4697
  • Accuracy: 0.4697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.874 1.0 58 1.8367 0.1624 0.2576 0.2032 0.1524 0.2576 0.1870 0.2024 0.2576 0.2576 0.2576
1.9776 2.0 116 1.9333 0.0771 0.1439 0.0881 0.0743 0.1439 0.0940 0.1402 0.1439 0.1439 0.1439
1.645 3.0 174 1.8058 0.1674 0.2803 0.1932 0.1766 0.2803 0.1880 0.2217 0.2803 0.2803 0.2803
1.6353 4.0 232 1.6974 0.2498 0.3636 0.2906 0.2124 0.3636 0.2464 0.3095 0.3636 0.3636 0.3636
1.6165 5.0 290 1.6144 0.2440 0.3409 0.2804 0.2940 0.3409 0.3290 0.2857 0.3409 0.3409 0.3409
1.7496 6.0 348 1.7440 0.2610 0.3636 0.3308 0.2845 0.3636 0.3528 0.2888 0.3636 0.3636 0.3636
1.8783 7.0 406 1.5126 0.3535 0.4167 0.3994 0.3637 0.4167 0.4048 0.3646 0.4167 0.4167 0.4167
1.2903 8.0 464 1.5240 0.3589 0.4167 0.4036 0.3702 0.4167 0.4107 0.3644 0.4167 0.4167 0.4167
1.8885 9.0 522 1.5423 0.3727 0.4470 0.4283 0.3800 0.4470 0.4329 0.3856 0.4470 0.4470 0.4470
1.0726 10.0 580 1.8002 0.3168 0.4015 0.3651 0.3364 0.4015 0.3788 0.3456 0.4015 0.4015 0.4015
1.2297 11.0 638 1.9532 0.3087 0.3788 0.3653 0.3752 0.3788 0.4335 0.3300 0.3788 0.3788 0.3788
0.7152 12.0 696 1.8452 0.3120 0.3864 0.3677 0.3922 0.3864 0.4313 0.3156 0.3864 0.3864 0.3864
0.7479 13.0 754 1.7619 0.3686 0.4394 0.4348 0.3981 0.4394 0.4546 0.3645 0.4394 0.4394 0.4394
0.2766 14.0 812 1.8000 0.3931 0.4924 0.4657 0.4146 0.4924 0.4792 0.4080 0.4924 0.4924 0.4924
0.4092 15.0 870 2.0428 0.3611 0.4318 0.4252 0.3772 0.4318 0.4421 0.3673 0.4318 0.4318 0.4318
0.1272 16.0 928 2.1450 0.3493 0.4242 0.4203 0.3651 0.4242 0.4419 0.3598 0.4242 0.4242 0.4242
0.2751 17.0 986 2.3002 0.3782 0.4394 0.4357 0.4548 0.4394 0.5101 0.3712 0.4394 0.4394 0.4394
0.3277 18.0 1044 2.2109 0.3832 0.4470 0.4450 0.4073 0.4470 0.4770 0.3856 0.4470 0.4470 0.4470
0.0134 19.0 1102 2.4450 0.3585 0.4470 0.4219 0.3987 0.4470 0.4533 0.3729 0.4470 0.4470 0.4470
0.0737 20.0 1160 2.5434 0.3468 0.4091 0.4054 0.3581 0.4091 0.4161 0.3508 0.4091 0.4091 0.4091
0.0203 21.0 1218 2.8118 0.3895 0.4773 0.4493 0.4176 0.4773 0.4699 0.4098 0.4773 0.4773 0.4773
0.0072 22.0 1276 2.7996 0.3620 0.4242 0.4165 0.3783 0.4242 0.4359 0.3729 0.4242 0.4242 0.4242
0.1251 23.0 1334 2.9001 0.4009 0.4394 0.4291 0.4500 0.4394 0.4703 0.4067 0.4394 0.4394 0.4394
0.0054 24.0 1392 2.8660 0.4011 0.4470 0.4327 0.4245 0.4470 0.4535 0.4147 0.4470 0.4470 0.4470
0.0091 25.0 1450 2.8868 0.3852 0.4167 0.4086 0.3965 0.4167 0.4115 0.3858 0.4167 0.4167 0.4167
0.002 26.0 1508 2.9311 0.3952 0.4394 0.4272 0.4054 0.4394 0.4343 0.4043 0.4394 0.4394 0.4394
0.0008 27.0 1566 2.9526 0.4052 0.4470 0.4388 0.4173 0.4470 0.4483 0.4118 0.4470 0.4470 0.4470
0.002 28.0 1624 3.0159 0.4074 0.4470 0.4389 0.4227 0.4470 0.4489 0.4116 0.4470 0.4470 0.4470
0.0017 29.0 1682 2.9797 0.4121 0.4545 0.4431 0.4192 0.4545 0.4464 0.4193 0.4545 0.4545 0.4545
0.0016 30.0 1740 2.9981 0.3677 0.4394 0.4256 0.3741 0.4394 0.4271 0.3761 0.4394 0.4394 0.4394

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/square_run_second_vote_full_pic_75_age_gender

Finetuned
(584)
this model