square_run_first_vote_full_pic_50

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8395
  • F1 Macro: 0.2931
  • F1 Micro: 0.3182
  • F1 Weighted: 0.3126
  • Precision Macro: 0.3510
  • Precision Micro: 0.3182
  • Precision Weighted: 0.3702
  • Recall Macro: 0.2978
  • Recall Micro: 0.3182
  • Recall Weighted: 0.3182
  • Accuracy: 0.3182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9357 1.0 58 1.9251 0.1142 0.2045 0.1326 0.2916 0.2045 0.3719 0.1805 0.2045 0.2045 0.2045
1.8428 2.0 116 1.9975 0.0864 0.1894 0.0941 0.0690 0.1894 0.0756 0.1762 0.1894 0.1894 0.1894
1.8324 3.0 174 1.8298 0.1725 0.2727 0.2132 0.1532 0.2727 0.1894 0.2191 0.2727 0.2727 0.2727
1.5574 4.0 232 1.7557 0.1128 0.2652 0.1548 0.0798 0.2652 0.1095 0.1928 0.2652 0.2652 0.2652
1.9434 5.0 290 1.7244 0.3019 0.3939 0.3572 0.2839 0.3939 0.3404 0.3375 0.3939 0.3939 0.3939
1.9357 6.0 348 1.6611 0.3208 0.3712 0.3669 0.3285 0.3712 0.3749 0.3253 0.3712 0.3712 0.3712
1.8454 7.0 406 1.6835 0.3043 0.3939 0.3397 0.3472 0.3939 0.3939 0.3515 0.3939 0.3939 0.3939
1.7616 8.0 464 1.8893 0.2312 0.2803 0.2544 0.3179 0.2803 0.3702 0.2728 0.2803 0.2803 0.2803
1.5512 9.0 522 1.7856 0.2366 0.3182 0.2696 0.2788 0.3182 0.3172 0.2820 0.3182 0.3182 0.3182
1.777 10.0 580 1.9182 0.3136 0.3864 0.3465 0.3176 0.3864 0.3434 0.3525 0.3864 0.3864 0.3864
1.3075 11.0 638 1.7205 0.3324 0.3939 0.3795 0.3461 0.3939 0.3893 0.3407 0.3939 0.3939 0.3939
0.8476 12.0 696 1.8083 0.3203 0.3788 0.3495 0.3297 0.3788 0.3672 0.3581 0.3788 0.3788 0.3788
1.0324 13.0 754 1.9825 0.3046 0.3485 0.3341 0.3316 0.3485 0.3807 0.3315 0.3485 0.3485 0.3485
1.154 14.0 812 2.0418 0.2869 0.3333 0.3151 0.2847 0.3333 0.3140 0.3064 0.3333 0.3333 0.3333
0.5406 15.0 870 2.1651 0.3242 0.3561 0.3453 0.3366 0.3561 0.3561 0.3313 0.3561 0.3561 0.3561
1.5052 16.0 928 2.3796 0.2814 0.3561 0.3228 0.3189 0.3561 0.3611 0.3127 0.3561 0.3561 0.3561
0.1641 17.0 986 2.2210 0.3286 0.3864 0.3741 0.3346 0.3864 0.3768 0.3361 0.3864 0.3864 0.3864
0.1201 18.0 1044 2.2744 0.3384 0.3939 0.3852 0.3331 0.3939 0.3811 0.3474 0.3939 0.3939 0.3939
0.1059 19.0 1102 2.4881 0.3198 0.3712 0.3485 0.3702 0.3712 0.3640 0.3244 0.3712 0.3712 0.3712
0.0828 20.0 1160 2.6911 0.3369 0.4091 0.3897 0.3378 0.4091 0.3826 0.3473 0.4091 0.4091 0.4091
0.0903 21.0 1218 2.9249 0.3351 0.3561 0.3564 0.3430 0.3561 0.3614 0.3341 0.3561 0.3561 0.3561
0.0455 22.0 1276 3.1538 0.2830 0.3409 0.3261 0.2951 0.3409 0.3330 0.2889 0.3409 0.3409 0.3409
0.0137 23.0 1334 3.0196 0.3147 0.3712 0.3598 0.3095 0.3712 0.3530 0.3246 0.3712 0.3712 0.3712
0.0088 24.0 1392 3.0033 0.3512 0.4015 0.3958 0.3562 0.4015 0.4024 0.3586 0.4015 0.4015 0.4015
0.205 25.0 1450 3.1499 0.3854 0.4091 0.3978 0.3923 0.4091 0.4032 0.3939 0.4091 0.4091 0.4091
0.0072 26.0 1508 3.2906 0.3440 0.3712 0.3651 0.3438 0.3712 0.3663 0.3516 0.3712 0.3712 0.3712
0.0019 27.0 1566 3.3223 0.3542 0.3712 0.3663 0.3524 0.3712 0.3673 0.3627 0.3712 0.3712 0.3712
0.0043 28.0 1624 3.2986 0.3729 0.3864 0.3840 0.3726 0.3864 0.3838 0.3753 0.3864 0.3864 0.3864
0.0016 29.0 1682 3.3453 0.3469 0.3788 0.3741 0.3504 0.3788 0.3744 0.3483 0.3788 0.3788 0.3788
0.0031 30.0 1740 3.3308 0.3465 0.3788 0.3753 0.3514 0.3788 0.3760 0.3456 0.3788 0.3788 0.3788

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/square_run_first_vote_full_pic_50

Finetuned
(584)
this model