This is a version of the cointegrated/rut5-small model fine-tuned on some Russian dialogue data. It is not very smart and creative, but it is small and fast, and can serve as a fallback response generator for some chatbot or can be fine-tuned to imitate the style of someone.
The input of the model is the previous dialogue utterances separated by '\n\n'
, and the output is the next utterance.
The model can be used as follows:
# !pip install transformers sentencepiece
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
tokenizer = T5Tokenizer.from_pretrained("cointegrated/rut5-small-chitchat")
model = T5ForConditionalGeneration.from_pretrained("cointegrated/rut5-small-chitchat")
text = 'Привет! Расскажи, как твои дела?'
inputs = tokenizer(text, return_tensors='pt')
with torch.no_grad():
hypotheses = model.generate(
**inputs,
do_sample=True, top_p=0.5, num_return_sequences=3,
repetition_penalty=2.5,
max_length=32,
)
for h in hypotheses:
print(tokenizer.decode(h, skip_special_tokens=True))
# Как обычно.
# Сейчас - в порядке.
# Хорошо.
# Wall time: 363 ms
- Downloads last month
- 128
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.