distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0605
- Precision: 0.9251
- Recall: 0.9357
- F1: 0.9304
- Accuracy: 0.9837
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2402 | 1.0 | 878 | 0.0694 | 0.9168 | 0.9215 | 0.9191 | 0.9814 |
0.051 | 2.0 | 1756 | 0.0595 | 0.9249 | 0.9330 | 0.9289 | 0.9833 |
0.0302 | 3.0 | 2634 | 0.0605 | 0.9251 | 0.9357 | 0.9304 | 0.9837 |
Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.