Phi-4 ZeroWw quantizations
- For q4_k: output and embed tensors quantized to q8_0, all other tensors quantized for q4_k.
- For q5_k, q6_k, q8_0 and q8_0 --pure: output and embed tensors quantized to bf16, all other tensors quantized for q5_k, q6_k, q8_0 and q8_0 --pure.
- BF16 and imatrix for q5_k, q6_k available.
Quant type | File Size | Vram* | |
---|---|---|---|
phi-4.q8.q4 | 4 bits per weight | 9.43 GB | 12.9 GB |
phi-4.bf16.q5 | 5 bits per weight | 11.9 GB | 14.2 GB |
phi-4.bf16.q5.im | 5 bits per weight | 11.9 GB | 14.2 GB |
phi-4.bf16.q6 | 6 bits per weight | 13.2 GB | 15.5 GB |
phi-4.bf16.q6.im | 6 bits per weight | 13.2 GB | 15.5 GB |
phi-4.bf16.q8 | 8 bits per weight | 16.5 GB | 18.5 GB |
phi-4.bf16.q8p | 8 bits per weight | 15.6 GB | 18.6 GB |
phi-4.bf16 | 16 bits per weight | 29.3 GB | tbd |
*approximate value at 16k context, FP16 cache.
ZeroWw quantization: huggingface.co/RobertSinclair
python convert_hf_to_gguf.py --outtype bf16 phi-4 --outfile phi-4.bf16.gguf
llama-quantize --allow-requantize --output-tensor-type q8_0 --token-embedding-type q8_0 phi-4.bf16.gguf phi-4.q8.q4.gguf q4_k
llama-quantize --allow-requantize --output-tensor-type bf16 --token-embedding-type bf16 phi-4.bf16.gguf phi-4.bf16.q5.gguf q5_k
llama-quantize --imatrix imatrix.dat --leave-output-tensor phi-4.bf16.gguf phi-4.bf16.q5.im.gguf q5_k
llama-quantize --allow-requantize --output-tensor-type bf16 --token-embedding-type bf16 phi-4.bf16.gguf phi-4.bf16.q6.gguf q6_k
llama-quantize --imatrix imatrix.dat --leave-output-tensor phi-4.bf16.gguf phi-4.bf16.q6.im.gguf q6_k
llama-quantize --allow-requantize --output-tensor-type bf16 --token-embedding-type bf16 phi-4.bf16.gguf phi-4.bf16.q8.gguf q8_0
llama-quantize --allow-requantize --pure phi-4.bf16.gguf phi-4.bf16.q8p.gguf q8_0
Phi-4 Model Card
Model Summary
Developers | Microsoft Research |
Description | phi-4 is a state-of-the-art open model built upon a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach was to ensure that small capable models were trained with data focused on high quality and advanced reasoning.phi-4 underwent a rigorous enhancement and alignment process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures |
Architecture | 14B parameters, dense decoder-only Transformer model |
Context length | 16384 tokens |
Usage
Input Formats
Given the nature of the training data, phi-4
is best suited for prompts using the chat format as follows:
<|im_start|>system<|im_sep|>
You are a medieval knight and must provide explanations to modern people.<|im_end|>
<|im_start|>user<|im_sep|>
How should I explain the Internet?<|im_end|>
<|im_start|>assistant<|im_sep|>
- Downloads last month
- 542
Hardware compatibility
Log In
to view the estimation
16-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for cmh/phi-4_ZeroWw
Base model
microsoft/phi-4