繁體中文情緒分類: 負面(0)、正面(1)

依據ckiplab/albert預訓練模型微調,訓練資料集只有8萬筆,做為課程的範例模型。

使用範例:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("clhuang/albert-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("clhuang/albert-sentiment")

## Pediction
target_names=['Negative','Positive']
max_length = 200 # 最多字數 若超出模型訓練時的字數,以模型最大字數為依據 
def get_sentiment_proba(text):
    # prepare our text into tokenized sequence
    inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
    # perform inference to our model
    outputs = model(**inputs)
    # get output probabilities by doing softmax
    probs = outputs[0].softmax(1)

    response = {'Negative': round(float(probs[0, 0]), 2), 'Positive': round(float(probs[0, 1]), 2)}
    # executing argmax function to get the candidate label
    #return probs.argmax()
    return response

get_sentiment_proba('我喜歡這本書')
get_sentiment_proba('不喜歡這款產品')
Downloads last month
80
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.