Edit model card

XLM-R-BERTić

This model was produced by pre-training XLM-Roberta-large 48k steps on South Slavic languages using XLM-R-BERTić dataset

Benchmarking

Three tasks were chosen for model evaluation:

  • Named Entity Recognition (NER)
  • Sentiment regression
  • COPA (Choice of plausible alternatives)

In all cases, this model was finetuned for specific downstream tasks.

NER

Average macro-F1 scores from three runs were used to evaluate performance. Datasets used: hr500k, ReLDI-sr, ReLDI-hr, and SETimes.SR.

system dataset F1 score
XLM-R-BERTić hr500k 0.927
BERTić hr500k 0.925
XLM-R-SloBERTić hr500k 0.923
XLM-Roberta-Large hr500k 0.919
crosloengual-bert hr500k 0.918
XLM-Roberta-Base hr500k 0.903
system dataset F1 score
XLM-R-SloBERTić ReLDI-hr 0.812
XLM-R-BERTić ReLDI-hr 0.809
crosloengual-bert ReLDI-hr 0.794
BERTić ReLDI-hr 0.792
XLM-Roberta-Large ReLDI-hr 0.791
XLM-Roberta-Base ReLDI-hr 0.763
system dataset F1 score
XLM-R-SloBERTić SETimes.SR 0.949
XLM-R-BERTić SETimes.SR 0.940
BERTić SETimes.SR 0.936
XLM-Roberta-Large SETimes.SR 0.933
crosloengual-bert SETimes.SR 0.922
XLM-Roberta-Base SETimes.SR 0.914
system dataset F1 score
XLM-R-BERTić ReLDI-sr 0.841
XLM-R-SloBERTić ReLDI-sr 0.824
BERTić ReLDI-sr 0.798
XLM-Roberta-Large ReLDI-sr 0.774
crosloengual-bert ReLDI-sr 0.751
XLM-Roberta-Base ReLDI-sr 0.734

Sentiment regression

ParlaSent dataset was used to evaluate sentiment regression for Bosnian, Croatian, and Serbian languages. The procedure is explained in greater detail in the dedicated benchmarking repository.

system train test r^2
xlm-r-parlasent ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.615
BERTić ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.612
XLM-R-SloBERTić ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.607
XLM-Roberta-Large ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.605
XLM-R-BERTić ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.601
crosloengual-bert ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.537
XLM-Roberta-Base ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.500
dummy (mean) ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl -0.12

COPA

system dataset Accuracy score
BERTić Copa-SR 0.689
XLM-R-SloBERTić Copa-SR 0.665
XLM-R-BERTić Copa-SR 0.637
crosloengual-bert Copa-SR 0.607
XLM-Roberta-Base Copa-SR 0.573
XLM-Roberta-Large Copa-SR 0.570
system dataset Accuracy score
BERTić Copa-HR 0.669
XLM-R-SloBERTić Copa-HR 0.628
XLM-R-BERTić Copa-HR 0.635
crosloengual-bert Copa-HR 0.669
XLM-Roberta-Base Copa-HR 0.585
XLM-Roberta-Large Copa-HR 0.571

Citation

Please cite the following paper:

@inproceedings{ljubesic-etal-2024-language,
    title = "Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining",
    author = "Ljube{\v{s}}i{\'c}, Nikola  and
      Suchomel, V{\'\i}t  and
      Rupnik, Peter  and
      Kuzman, Taja  and
      van Noord, Rik",
    editor = "Melero, Maite  and
      Sakti, Sakriani  and
      Soria, Claudia",
    booktitle = "Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.sigul-1.23",
    pages = "189--203",
}
Downloads last month
4,205
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train classla/xlm-r-bertic